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1 Introduction

This mini project implements the fully convolutional 3D U-Net segmentation network [1] and traisn/evaluates it on the
NCI-ISBI 2013 Challenge: Automated Segmentation of Prostate Structures dataset, which consists of 80 patients’ 3D
MRI scans from their prostate region. The model was implemented using core TensorFlow (i.e. without Keras) and
Python. The main focus of this work was establishing preliminary benchmark performance along with developing a
package that enables us to quickly iterate and try various model architectures (through hyperparameter tuning) and
evaluation methods. Therefore, the project, in its current form is not intended to be a rigorous and thorough evaluation
of the algorithm and it is merely a platform for future work and experimentation.

2 Data preparation

The dataset’s train and leadership samples were combined to form a training set of 70 samples. The number of scans,
their dimensions and various other relevant sample metrics were explored using the data_exploration jupyter
notebook. Several of the MRI scans and their corresponding segmentation data were examined from different patients
using tiled plots and animations.

Finally, the scans were preprocessed using the following steps:

• All MRI scans were rescaled to be between zero and one.

• Although the 3D U-Net is a fully convolutional network architecture (which is therefore dimension agnostic),
the training scans were down-sampled to 128 x 128 size to reduce the required memory during training. The
test dataset was saved in both original and resized sizes to ensure we measure test performance on the original
resolution.

• To form batches of the data at training time, the number of scans (i.e. the depth of input tensors) had to be
unified across patients. Therefore, each patient’s data was maximised to be no more than 32 scans. Then, at
training time, patients with less scans are padded with zeros.

• An input size of [batch, 32, 128, 128, 1] was also desirable as the network has shortcut connections between
the analysis and synthesis paths, which necessitate compatible tensor dimensions at equal depths of the
architecture. Maximum depth of 32 was chosen, as the network’s three dimensional max-pooling and up-
convolutional operations both shrink and expand the data by a factor of 2 respectively. Therefore, an input
tensor dimension that is the power of two guarantees error free batches without masking.

• Unfortunately, no time was left for incorporating data augmentation into the input pipeline which surely did
hurt the performance of the trained models.

3 Model architecture

The original implementation was followed as closely as possible, including convolutional, max-pooling and transposed
convolutional layer parameters. Batch normalisation [2] and softmax with weighted cross-entropy loss were also used
as in the original paper. Due to the flexible parametrisation of experiments in this implementation, several crucial
hyperparameters of the model architecture can be easily changed by changing a model’s params.json file. These
parameters include: depth of architecture, number of 3D convolutional filters to use in the first layer, and a flag for
whether to use batch normalisation.

https://goo.gl/fw8qku
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Furthermore, we can set the batch size, training steps, learning rate, class weights, train and test datasets to use as well
from the model folder’s parameter file.

Due to time constraints, only a few models were trained for this project (see below), and they were only trained for
a short period of time (100 epochs). To see the full hyperparameter list of these referenced models, please check the
params.json file in the project’s models.

• base_model: Mimics the original paper’s architecture: depth=4, n_base_filters=32, BN=True.
• base_model_no_bn: Same as above but without batch normalisation.
• deeper_model: depth=6, n_base_filters=8, BN=True.

4 Model performance

The performance of these models were assessed on the test dataset’s 10 patients, using the mean Intersection of Union
(IoU) across the three classes, defined as TF

TF+FP+FN , where TP: true positives, FP: false positives, FN: false negatives.
Due to time constraints, proper cross-validation was not carried out and the networks were only tested on this one test
set. Similarly, (and unfortunately), the other interesting evaluation methods of the paper, such as artificially un-labelling
some of the data and assessing model performance as a function of labelled slices, were also left out from this initial
work. Some of these ideas would be relatively easy to incorporate given the current state of the project however.

Both the original test dataset (without resizing to 128x128) and the resized version were used for evaluation. With
model deeper, the original 400x400 scans of the test dataset resulted in incompatible layer sizes, that could not been
concatenated, hence the missing evaluation for this model-testset pair. As could be clearly seen from Table1, there is
quite a lot of room for improvement, compared to the authors’ results. Nonetheless, and not surprisingly, the results
demonstrate, that deeper architectures and batch normalisation get better results.

Mean IOU
Model Original 128 x 128

Base with BN 0.3384 0.4731
Base w/o BN 0.3081 0.3284
Deeper with BN - 0.5223

Table 1: Model performance on test dataset

Finally, Figure 1 and Figure 2 show segmented MRI images from the base model and deeper model respectively.
Despite the poor overall performance, these images are actually quite encouraging and demonstrate that the models are
heading/training in the right direction. We can generate tiled-plots like this (or even animations) for any of the patients
from any of our models, see model_exploration notebook.

5 Software engineering decision

The project was built around the excellent high-level tf.data and tf.estimator APIs of TensorFlow. The model
itself was implemented using tf.layers. The best practices dictated by the general guides and tutorials of the official
TensorFlow site were followed and respected wherever possible. Several TensorFlow anomalies/bugs (1, 2, and others
mentioned in the code) were encountered during development, but thanks to the strong community around TF most
were fairly easy to resolve.

Additionally, I took inspiration from the repo of Stanford’s CS230 class and also used this cookiecutter template to
start with. Unfortunately I did not have time left to write a few unit-tests for the data preprocessing and handling
functionality. If I had had time for it, I would have chosen pytest for this.

6 Future work

Besides the obvious polishing touches (writing unit-tests, building Sphinx docs) I would focus on training these models
further and invest time in implementing the authors’ data augmentation pipeline. Furthermore, adding residual layers
(see here for example) to this architecture seems like a good idea that could further boost its utility and performance.
Finally, I would love to track the confusion matrix using tensorboard in real-time while training.
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https://github.com/tensorflow/tensorflow/issues/20379
https://github.com/tensorflow/tensorflow/issues/21748
https://github.com/cs230-stanford/cs230-code-examples/tree/master/tensorflow/vision
https://drivendata.github.io/cookiecutter-data-science/
https://github.com/zhengyang-wang/3D-Unet--Tensorflow
https://github.com/tensorflow/tensorboard/issues/227
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Figure 1: Base model predictions. True segmentation is on the left, prediction on the right.

Figure 2: Deeper model predictions. True segmentation is on the left, prediction on the right.
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