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Part I

Week 1-4



1 | Vectors

1.1 What is a vector

Vectors have no location, only a direction and length. We describe (column)

vectors as a list of real numbers, and we call these numbers the components of the

vector.

Mathematicians tend to index these starting with 1, while in programming 0 is

more commonly used as the index of the first component.

The length of a vector is Euclidean in most cases, which is calculated as the 2nd

norm: summing the squared components and taking the square root of the sum.

‖x‖2 =

√√√√n−1∑
i=0

χ2
i =
√
xTx

It is also the square root of the dot product of the vector with itself. The 3rd norm

(or nth root) is the same but instead of squaring we raise each component to the

3rd and then instead of taking the square root, we take the 3rd root.

Size of the vector is just the number of components in the vector.

Unit basis vectors are vectors with all their components equal to zero except one,

which is set to 1. Using three of these can be used to describe axes of the coordinate

system of the 3D space: (0,0,1), (0,1,0), (1,0,0). The notation of the in this course

is e1, meaning the 2nd entry of vector e is a 1, all the other components are zero.

1.2 Simple vector operations

Two vectors are equal if all of their components are the same.
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1.3. Advanced vector operations 7

Adding two vectors together could be done by summing each component of the

same index. The geometrical method, is the parallelogram method, where we lay

the first vector’s head to the toe of the second, and result is the vector that connects

the toe of the first to the head of the second.

Scaling a vector by a scalar is achieved by multiplying all components by the

scalar.

Subtracting two vectors could be done by subtracting each component of the

first vector from same index components of the 2nd vector. Geometrically this is

laying the -1 scaled version of 2nd vector’s toe to the head of the first vector and

result is the vector that connects the toe of the first to the head of the second (which

now has been rotated 180 degrees).

1.3 Advanced vector operations

AXPY (alpha times x plus y) operation scales vector x by α then adds y to it.

Linear combinations of vectors, given two vectors u and v is αu + βv, which

could be calculated by chaining two AXPYs together:

1. w = AXPY(a = α, x = u, y = 0)

2. AXPY(a = β, x = v, y = w)

This AXPY chaining method could be generalized for n vectors and n scaling com-

ponents.

Any vector could be rewritten as the linear combinations of its space’s

unit vectors. Following the idea above in a 3D coordinate system, vector u(1,2,3)

could be rewritten as: 1 ∗ e1 + 2 ∗ e2 + 3 ∗ e3. If we denote the scaling vector’s

components with χ this operation takes the general form of:

n−1∑
i=0

χiei

Dot = inner product: multiply the components of the two vectors pair-wise and



1.3. Advanced vector operations 8

add them together.

dot(x, y) = xTy =
n−1∑
i=0

χiψi

So the length of a vector is just square root of the dot product with itself.

Angle between vectors: because of the law of cosine (c2 = a2 + b2 − 2 ∗ ab ∗ cos)
we can prove that for any two vectors regardless of their size=dimension, the angle

between them could be calculated as:

cosθ =
xTy

‖x‖2‖y‖2

The proof is really simple, and can be watched here. Also from this we can also see

that xTy = ‖x‖2‖y‖2cosθ

Cosine in a right triangle is b/c, which in this scenario is the projection of vector y

onto x. So the part of y that moves into the same direction. Thus the dot product

of two vectors measures how collinear two vectors are and is maximised when they

are parallel, and 0, when they are orthogonal since cos(90◦) = 0.

The cross product is a binary operation on two vectors in 3D denoted by the

symbol ×. The cross product a × b of two linearly independent vectors a and b is

a vector that is perpendicular to both and therefore normal to the plane containing

them: a× b = ‖a‖2‖b‖2sinθn, where n is the unit vector perpendicular to the plane

containing a and b in the direction given by the right hand rule. If a and b are

parallel the cross product is 0. It has many applications in physics and engineering

and where they use the right hand rule.

The length of the cross product of two vectors: ‖x × y‖2 = ‖x‖2‖y‖2sinθ.
In a right triangle the sine is defined as a/c which in this scenario measures the

orthogonal component in y with respect to x. So the length of the cross product is

maximised when the two vectors are orthogonal and 0 when they are parallel, since

sin(0◦) = 0. All of this is nicely summarised by Sal, here.

Vector functions can take several scalar and / or vectors as input and yield a

vector as output. So it effectively maps a vector to another.

https://www.youtube.com/watch?t=374&v=WQHB3C3hIYM
https://www.khanacademy.org/math/linear-algebra/vectors_and_spaces/dot_cross_products/v/dot-and-cross-product-comparison-intuition
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1.4 Slicing and dicing

We can partition the dot product into equal sized subvector-operations. If n = 5,

we can calculate the dot product of the first 3 components of x and y: χ123
Tψ123,

then add it to dot product of the last two components in each vector: χ45
Tψ45.

Although it does not make much sense to code vector operations this way, it makes

matrix operation run a lot faster as we will see later in the course.



2 | Linear transformations

2.1 Linear transformations

A vector function L is a linear transformation (LT) if:

• You can scale first and then transform or transform first and then scale:

L(αx) = αL(X)

and

• you can transform first and then sum or sum first and then transform:

L(x+ y) = L(x) + L(y)

Another, more concise way of saying this is, L is a Rn → Rm linear transformation

if and only if (iff, ⇐⇒ ) for all u, v ∈ R and α, β ∈ R:

L(αu+ βv) = αL(u) + βL(u)

2.2 Principle of mathematical induction

Many of the linear transformations could be proven by using the PMI. Which works

as follows:

If one can show that:

• (Base case) a property holds for k = kb; and

• Inductive step if it holds for k = K, where K ≥ kb, then it also holds for

k = K + 1

• then one can conclude that the property holds for all integers k ≥ kb

10



2.3. Linear transformations as matrices 11

2.3 Linear transformations as matrices

Since every vector could be rewritten as a linear combination of its space’s unit basis

vectors, we can think of the linear transformation L, such that simply transforms

these unit basis vectors, and when we apply it to any arbitrary vector, the resulting

vector will be given by the linear combination of these transformed unit basis vectors.

So if we know the transformed unit basis vectors, we don’t even need to know the

linear transformation function, yet we can calculate the result of such LT on a vector.

The linear transformation L is completely described by the set of vectors {a0, ..., an−1},
where aj = L(ej). So for any vector x,

L(x) =
n−1∑
j=0

χjaj

Because of this, we could rewrite linear transformations in a matrix called A, where

each column holds one of the transformed unit basis vector of the space. Then a LT

on the vector x is simply L(x) = Ax.

Let α ∈ Rm×n; and x, y ∈ Rn. Then

• A(αx) = αAx

• A(x+ y) = Ax+ Ay

Put it simply, matrix-vector multiplication is always a linear transforma-

tion.

2.4 Unit basis vector indexing

If A is a matrix and ej is a unit basis vector of appropriate length, then Aej = aj

where aj is the jth column of the matrix A.

In other words if we have an m × n matrix, we can select any column of it, by

multiplying it with a vector of length n where each component is 0, except for the

one which column we want from A.
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Equivalently we can do the same with a vector, by multiplying it with the transposed

unit basis vector of appropriate length.

Combining these two rules, we can select any index from a matrix by

applying two unit basis vector multiplication. Let A be a m× n matrix and

αi,j its (i, j) element. Then

αi,j = eTi (Aej)

2.5 Proving that a function is a LT

A function f : Rn → Rm is a linear transformation if and only if it can be written

as a matrix vector multiplication. We can exploit this to check if any given function

is a linear transformation, using unit basis vectors.

Is f(

(
χ0

χ1

)
) =

(
χ0 + χ1

χ1

)
a linear transformation?

• Compute a possible matrix that represents f :

f(

(
1

0

)
) =

(
1 + 0

1

)
=

(
1

1

)
and

f(

(
0

1

)
) =

(
0 + 1

0

)
=

(
1

0

)
• if f is a linear transformation, then f(x) = Ax where

A =

(
1 1

1 0

)
.

• Now,

Ax =

(
1 1

1 0

)(
χ0

χ1

)
=

(
χ0 + χ1

χ1

)

Thus we conclude that f(x) = Ax and therefore f(x) is a linear transformation.

A quick check before doing this: if f(0) 6= 0, then f(x) is not a linear transformation.
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2.6 Rotating vectors in 2D

If we take the first unit basis vector

(
1

0

)
in 2D, and rotate it by θ = 37◦ then, since

the rotated vector’s length is still 0, its coordinates will be

(
cosθ

sinθ

)
.

Similarly the other unit basis vector

(
0

1

)
will become

(
−sinθ
cosθ

)
.

Thus, the linear transformation that rotates a vector x ∈ R2 by an angle θ is

represented by the 2× 2 matrix:

(
cos(θ) −sin(θ)

sin(θ) cos(θ)

)
.



3 | Matrix vector operations

3.1 Special matrices

The zero matrix is an n ×m matrix denoted by 0 or 0n×m, with all its elements

being zero. No matter what vector we multiply it by we get back a zero vector.

0n×mx = 0m

The identity matrix is an n × n matrix denoted by I or In, with all its elements

being zero, except its diagonal which has ones. No matter what vector we multiply

it by we get back the same vector.

In×nx = xn

The diagonal matrix is an n × n matrix, with all its elements being zero, except

the diagonal ones which could be anything.

In the upper triangular matrix all the elements below the diagonal are zero. In

the strickly upper triangular matrix all the elements below and on the diagonal

are zero. In the unit upper triangular matrix all elements below the diagonal

are zero, and the diagonal has ones. All three of these have their corresponding

lower triangular version.

The transpose of matrix A has its rows as its columns:

A =

(
1α0,0 2α0,1 3α0,2

4α1,0 5α1,1 6α1,2

)
, AT =

1α0,0 4α0,1

2α1,0 5α1,1

3α2,0 6α2,1


More formally we could say, let A ∈ Rm×n and B ∈ Rn×m.

Then B is said to be the transpose of A if for 0 ≤ i < m and 0 ≤ j < n, βj,i = αi,j.

A ∈ Rn×n is symmetric matrix if AT = A, so if αi,j = αj,i for all i and j.

14



3.2. Opereations with matrices 15

3.2 Opereations with matrices

Scaling a matrix by a scalar simply means to multiply all of its components

by it. This is commutative, so if we have a vector x and a matrix A ∈ Rm×n,

(βA)x = β(Ax) = (βx)A.

The same holds for matrix-matrix addition.

3.3 Matrix vector multiplication

Ax =

α0,0 α0,1 α0,2

α1,0 α1,1 α1,2

α2,0 α2,1 α2,2


χ0

χ1

χ2



=

χ0

α0,0

α1,0

α2,0

+ χ1

α0,1

α1,1

α2,1

+ χ2

α0,2

α1,2

α2,2




In this way we perform AXPY operations, then add these together. But we could

also think of the matrix vector multiplication as forming dot products between the

vector and the rows of the matrix from top to bottom. This way each dot product

will be one of the components of the resulting vector.

Interestingly however, no matter how we partition the matrix-vector multiplication

algorithm, the cost of Ax in both cases, where A ∈ Rm×n is 2n×m flops.

When we work with triangular or symmetric matrices however, we can slice and dice

the matrix and vector in a clever way, which makes the algorithm more complex,

but reduces the flops overall since an AXPY or dot product with a zero vector is

always zero, so we don’t need to compute it. This reduces the cost to n(n+ 1) flops.

This is explained in Week 4’s, 2nd video of both 4.2 and 4.3.



4 | Matrix-vector to matrix-matrix

multiplication

4.1 Predicting the weather as a Markov process

In a Markov chain each event is only determined by its predecessor:

χ0 → χ1 → χ2 → χ3

or to put it more rigorously:

P (χ3|χ0, χ1, χ2) = P (χ2)

.

If we incredibly oversimplify weather prediction, we can treat it as a discrete time

Markov process, where each day’s weather is solely dependent on yesterday’s weather.

In our hypothetical example we can only have sunny, cloudy and rainy weather,

which can change into each other with distinct probabilities as shown in table 12.1.

What is the probability of having a sunny day the day after tomorrow, given today

is sunny?

0.4× 0.4 + 0.4× 0.3 + 0.2× 0.1 = 0.3

This could be generalized by realizing that we can think of table 12.1 as a matrix and

describe the fact that today is a sunny day, with the first unit basis vector. Then

multiplying these two together will select the first column of the matrix. Then we

can multiply this new column vector with the matrix again and we’ll get not only

the probability of having a sunny day the day after tomorrow, but also a cloudy

(0.4) and a rainy (0.3) one.

We can further generalize this, by exponentiating the matrix to the number of days

we are interested in. After a given time, if a discrete time Markov chain is both

16



4.2. Matrix vector multiplication with special matrices 17

Weather today
Weather tomorrow Sunny Cloudy Rainy

Sunny 0.4 0.3 0.1
Cloudy 0.4 0.3 0.6
Rainy 0.2 0.4 0.3

Table 4.1: Possibilities of changing weather

irreducible and aperiodic, it will converge to a stationary or equilibrium distribution,

which will describe the system in the long run.

4.2 Matrix vector multiplication with special ma-

trices

If we have a matrixA ∈ Rm,n and a vector x and we want to computeATx, it’s tempt-

ing to just make a copy of AT store it and then do the matrix vector multiplication.

Reading in A, requires 2m×n memory operations (memops) and writing/storing it

requires 2m× n memops again. Matrix vector multiplication requires 2m× n flops,

but flops are much quicker then memops.

Instead of inverting, storing and multiplying, we can modify the matrix-vector op-

eration. In the original algorithm we take each row of the matrix, transpose it and

take the dot product of it with the vector x. However, notice, that if we don’t

transpose the row, we will get exactly ATx at the end. This is a pretty neat trick

to speed this kind of operation up a lot.

Implementations achieve better performance (finish faster) if one accesses data con-

secutively in memory. Now, most scientific computing codes store matrices in

“column-major order” which means that the first column of a matrix is stored con-

secutively in memory, then the second column and so forth. Now, this means that

an algorithm that accesses a matrix by columns tends to be faster than an algorithm

that accesses a matrix by rows. That, in turn, means that when one is presented with

more than one algorithm, one should pick the algorithm that accesses the matrix by

columns.

Because of this for a matrix vector multiplication of Ax + y, algorithms that use

AXPYs do better, while for a matrix vector multiplication of ATx + y, algorithms

with dot product are preferable.
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Matrix vector multiplication with a symmetric matrix cost 2n2 flops.

4.3 Matrix-matrix multiplication

We compute a matrix-matrix multiplication of A ∈ R3×3 and B ∈ R3×3 as a chain

of matrix-vector multiplications.

AB =

α0,0 α0,1 α0,2

α1,0 α1,1 α1,2

α2,0 α2,1 α2,2


β0,0 β0,1 β0,2

β1,0 β1,1 β1,2

β2,0 β2,1 β2,2



=



β0,0

α0,0

α1,0

α2,0

+ β1,0

α0,1

α1,1

α2,1

+ β2,0

α0,2

α1,2

α2,2

 ‖
β0,1

α0,0

α1,0

α2,0

+ β1,1

α0,1

α1,1

α2,1

+ β2,1

α0,2

α1,2

α2,2

 ‖
β0,2

α0,0

α1,0

α2,0

+ β1,2

α0,1

α1,1

α2,1

+ β2,2

α0,2

α1,2

α2,2




The resulting 3 × 3 matrix consist of the column vectors of the individual matrix

vector multiplications.

So the γi,j element of C is just the dot product of the ith row of A and jth column

of B: γi,j = α(i,...)β(...,j).

The more interesting question is, why can we do this? Remember, that every linear

transformation (LT) can be represented in matrix form.

Let LA : Rk → Rm and LB : Rn → Rk be linear transformations and define LC(x) =

LA(LB(x)). Then:

• It could be easily proven that LC : Rn → Rm is a linear transformations,

always.

• There are A ∈ Rm×k and B ∈ Rk×n, that represent LA and LB respectively.

• There is a matrix C ∈ Rm×n that represents LC(x) = LA(LB(x)) = A(Bx).
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• The operation that computes C from A and B is called a matrix matrix mul-

tiplication.

• Notation: C = AB and Cx = (AB)x = A(Bx).

• The number of rows in A must be same as the number of rows in C.

• The number of columns in B must be same as the number of columns in C.

• The number of columns in A must be same as the number of rows in B.

• The cost of C = AB is 2m× n× k.

All scalar-scalar, scalar-vector, vector-scalar, vector-vector (dot-product), outer-

product (see below), matrix-vector, vector-matrix multiplication are just special

cases of the above described matrix matrix multiplication, see Figure 4.1.

Outer product: let x ∈ Rm and y ∈ Rn. Then the outer product of x and y is xyT ,

which yields a m×n matrix, with each element being the corresponding product of

the components of x and y, see Figure 4.1.
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Figure 4.1: Types of matrix-matrix multiplication
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4.4 Special properties of matrix multiplication

Matrix matrix multiplication does not always commute. But if A ∈ Rm×n, B ∈
Rn×k and C ∈ Rk×l, then

• (AB)C = A(BC)

• A(B + C) = AB + AC

• (A+B)C = AC +BC

• (AB)T = BTAT

• (ABC)T = CTBTAT

always.

If A ∈ Rm×n and I be the appropriate sized identity matrix, then AI = IA = A

always.

If A ∈ Rm×n and D is the diagonal matrix with diagonal elements δ0, δ1...δm−1,

where we partition A by its columns as

A = (a0|a1|...|an−1)
and by its rows like:

A =


ãT0

ãT1
...

ãTm−1


then

• AD = (δ0a0|δ1a1|...|δn− 1an−1)

•

DA =


δ0ã

T
0

δ1ã
T
1

...

δm−1ã
T
m−1


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always.

Let A,B ∈ Rn×n are both upper triangular matrices, then AB is upper triangular

as well. The same holds for lower triangular matrices.

Let A ∈ Rm×n, then ATA and AAT are both a symmetric matrix. Furthermore let

A,B ∈ Rn×n, be symmetric matrices. AB then is not necessarily symmetric.

Let x ∈ Rm. Then xxT is symmetric.
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5 | Matrix-matrix multiplication

5.1 Multiple rotations in one matrix

Remember that we can rotate any vector x ∈ R2 by angle θ, if we multiply it with

the following LT matrix: (
cos(θ) −sin(θ)

sin(θ) cos(θ)

)(
χ0

χ1

)

If we would then further rotate x by ρ we would end up applying another linear

transformation to the vector, which is (as we’ve seen in week 4) is just a matrix

matrix multiplication:(
cos(ρ) −sin(ρ)

sin(ρ) cos(ρ)

)((
cos(θ) −sin(θ)

sin(θ) cos(θ)

)(
χ0

χ1

))

Notice that we could have just rotate by θ + ρ:(
cos(θ + ρ) −sin(θ + ρ)

sin(θ + ρ) cos(θ + ρ)

)(
χ0

χ1

)

If we instead do the matrix matrix multiplication, we derive the law of sines and

cosines:
cos(θ + ρ) = cos(ρ)cos(θ)− sin(ρ)sin(θ)

sin(θ + ρ) = cos(ρ)sin(θ) + sin(ρ)cos(θ)

So if we ever forget the law of cosines and sines, and we don’t have access to the

internet and if remember the matrix of the LT we need to rotate a 2D vector, then

we can simply derive it. How useful is that.

24
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5.2 Computational aspepcts of matrix-matrix mul-

tiplication

Computationally, a matrix-matrix multiplication consists of three nested for loops:

• looping over the rows of A

– looping over the columns of B

∗ looping over the row of A and column of B to calculate their dot-

product

This three for loops could be ordered in 3! = 6 ways all together, leading to different

implementations of the matrix-matrix multiplication and different intuitions about

what this operation represents. Having the inner-most loop as the top one, makes

the algorithm perform rank-1 updates on the resulting C = AB matrix, where each

cell gets iteratively computed from sums of multiplications between the appropriate

cells of A and B.

To understand how matrix-matrix multiplication could be optimized, we need to

learn a bit about CPU architecture and L1, L2 caches. This is all nicely explained

in the enrichment chapter of week 5’s lecture notes. The bottom line is, that if we

slice and dice cleverly and make sure to utilize as much of the L1 and L2 cache

as possible, we achieve a matrix-matrix multiplication routine, that is around 90%

efficient, compared to the naive implementation, which achieves 2-3 %.



6 | Gaussian elimination

6.1 Gaussian elimination

Solving systems of linear equations could be automated or greatly sped up using

linear algebra. It relies on three facts@

• Equations could be reordered.

• Equations of a system could be modified by subtracting a multiple of another

equation of the system from it.

• Both sides of the equations in the system could be scaled by a non-zero scalar.

We do these manipulations to eventually reduce the system to an upper-triangular

system which is easier to solve. For example to following system of linear equations:

2χ0 + 4χ1 − 2χ2 = −10

4χ0 − 2χ1 + 6χ2 = 20

6χ0 − 4χ1 + 2χ2 = 18

could be reduced to:

2χ0 + 4χ1 − 2χ2 = −10

− 10χ1 + 10χ2 = 40

−8χ2 = −16

by

• row 2 - 2× row 1

• row 3 - 3× row 1

• row 3 - 1.6× row 2

26
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Then using back-substitution, we solve for χ2 in 3rd equation. Then use that in

2nd equation to solve for χ1. Finally we solve for χ0 in the 1st equation.

It is a lot easier to represent these systems however, with appended matrices instead

of many equations (GE is Gaussian Elimination):2 4 −2 −10

4 −2 6 20

6 −4 2 18

 GE−−→

 2 4 −2 −10

−10 10 40

−8 −16



Gauss transform: we can cast the problem of finding the appropriate scalars for

the deduction of one equation from the other, as a matrix-matrix multiplication.

Notice that the matrix we use, is the identity matrix, extended with the scalars we

computed before. Following on with the example above, we could have arrived at

the same upper triangular matrix by:

 1 0 0

−2 1 0

−3 0 1

×
2 4 −2 −10

4 −2 6 20

6 −4 2 18


1 0 0

0 1 0

0 −1.6 1

×
 2 4 −2 −10

−10 10 40

−16 8 48


 2 4 −2 −10

−10 10 40

−8 16


The great thing about this, is that we can only work with the left-hand side of

the appended matrix, and apply our Gauss transforms onto those. Then if we

store these Gauss matrices, we can separately apply them to the right-hand side

of the equations, a posteriori, which is called the forward substitution. This is

really handy when a new set of right-hand side values come along, because we don’t

have to recompute all the Gauss matrices, but simply perform a few matrix-vector

multiplications.

All of these steps could be combined into a neat algorithm that solves a system of

linear equations. Homework 6.2.5.1 summarises that algorithm.
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Solve it with Python: as an example, solving the following system of linear

equations: −1 2 −3 2

−2 2 −8 10

2 −6 6 −2


in Python, requires only four lines of code:

import numpy as np

a = np . array ( [ [−1 ,2 ,−3] , [−2 ,2 , −8 ] , [2 , −6 ,6 ] ] )

b = np . array ( [2 ,10 , −2 ] )

x = np . l i n a l g . s o l v e ( a , b )

6.2 LU Factorisation

If certain conditions are satisfied, then the Ax = b problem could be solved with the

LU factorisation, so there exist:

• unit lower triangular matrix L ∈ Rn×n , and

• upper triangular matrix U ∈ Rn×n,

such that

A = LU

We can work this out just by using slicing and dicing:

A→

(
α11 aT12

a21 A22

)
, L→

(
1 0

l21 L22

)
, U →

(
υ11 uT12

0 U22

)

So following the rules of matrix-matrix multiplication (and getting rid off some 0s

and 1s), A = LU , becomes:(
α11 = υ11 aT12 = uT12

a21 = l21υ11 A22 = l21u
T
12 + L22U22

)
.



6.2. LU Factorisation 29

We are getting there. So we can start to see an iterative algorithm emerging, where

we move along the diagonal, then section A as follows:

A→

(
ATL ATR

ABL ABR

)
,

then compute the values of LU as:(
υ11 ← α11 uT12 ← aT12

l21 ← a21/υ11 L22U22 ← A22 − l21uT12

)
.

So we effectively

• leave the row on the right from the diagonal (uT12) element the same,

• we divide the column below the diagonal element (a21), by the diagonal element

(υ11),

• and finally we do a rank-1 update on the sub-matrix (ABR) by subtracting the

outer product of l21 and uT12 from it.

This is effectively the same algorithm we end up with for the Gaussian elimination.

As an example, the LU factorisation of the following matrix:

A =

 1 −2 2

5 −15 8

−2 −11 −11



is firstly:  1 −2 2

5 −15 8

−2 −11 −11

→
 1 −2 2

5 −5 −2

−2 −15 −7


then:  1 −2 2

5 −5 −2

−2 −15 −7

→
 1 −2 2

5 −5 −2

−2 3 1


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So:

L←

 1 0 0

5 1 0

−2 3 1

 , U ←

1 −2 2

0 −5 −2

0 0 1


So we have A = LU , but we want to solve Ax = b. So

• we just use the above algorithm te get L and U ,

• then (LU)x = b, so L(Ux) = b, where we will call Ux = z

• so Lz = b, which we can solve easily for z, since L is a lower triangular matrix,

and we can just use the forward substitution algorithm for this.

• Finally, we substitute back to get Ux = z, using the back substitution algo-

rithm we have seen before in the Gaussian elimination.



7 | More on Gaussian elimination

and matrix inversion

7.1 When does Gaussian elimination work?

Gaussian elimination and the algorithm we derived for it might not work always, as

we might have to divide by zero. This can happen if one of the diagonal elements of

the original matrix is zero, or they become zero as the algorithm iterates over the

diagonal. But even if the Gaussian eliminates finishes, how can we know for sure

that we have a unique solution?

• Let L ∈ Rn×n be a unit lower triangular matrix, Lx = b always has a unique

solution (where x is unknown and b is given).

• Let U ∈ Rn×n be an upper triangular matrix with no zeros on its diagonal,

Ux = b always has a unique solution (where x is unknown and b is given).

And consequently, if A ∈ Rn×n and the Gaussian elimination / the LU factorisation

finishes and produces an upper triangular matrix which doesn’t have any zeros on

its diagonal, then we could be sure that there is a unique solution to Ax = b.

7.2 When Gaussian elimination does not work?

Sometimes, the LU factorisation cannot run fully as it will encounter a zero on the

diagonal of the matrix A. This however does not mean that there isn’t a solution to

the system of equations, but instead it just shows that the LU factorisation might

break down sometimes if the equations are not in the “right” order for example.
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A permutation matrix is matrix with all of its elements set to zero, except for one

in each row and column. which are set to one.

P =

0 1 0

0 0 1

1 0 0

 , A =

2 1 3

3 2 4

1 0 2

 , PA =

3 2 4

1 0 2

2 1 3


Notice, how the permutation matrix P , reordered the rows of A. This is because we

multiplied with it from the left. If instead we multiply from the right:

AP =

3 2 1

4 3 2

2 1 0


we reorder by column.

Additionally, a pivot matrix is an identity matrix, with its first and πth column

swapped:

P̃ (π) =


0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

 ,

where π = 3.

Using pivoting we can help the LU factorisation to reach to the end of the diagonal

and don’t terminate with a “cannot divide by zero” error. So as an example, let’s

say:

A =

2 4 −2

4 8 6

6 −4 2


As we procede with the LU factorisation, we compute the dividing factors, as l21 ←
a21/υ11 which is (4, 6)T/2, then we negate them (−2,−3) and store them below the

diagonal:  2 4 −2

−2 8 6

−3 −4 2


Now, when we perform the rank 1 update on the remainder sub-matrix L22U22 ←
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A22 − l21uT12, we get:  2 4 −2

−2 0 10

−3 −16 8


If we were to continue with the original LU factorisation algorithm, we would have

to divide by zero. To avoid that, we use P̃ (1) ∈ R2×2, to swap the 3rd and 2nd

rows. We need to embed this 2 × 2 matrix into the 3 × 3 identity matrix however,

so we get: 1 0 0

0 0 1

0 1 0

×
 2 4 −2

−2 0 10

−3 −16 8

 =

 2 4 −2

−3 −16 8

−2 0 10


Notice how the multipliers (−2,−3), swapped with the rows! Now we are effectively

done, because the Gauss transform is 0/ − 16 = 0, and so 10 − 0 × 8 = 0. So the

LU factorisation finished, with: 2 4 −2

−3 −16 8

−2 0 10

 , L =

 0 0 0

−3 0 0

−2 0 0

 , U =

2 4 −2

0 −16 8

0 0 10

 .

So with partial pivoting we can modify the LU factorisation to eventually get

PA = LU , where P is the matrix product of all the pivot matrices we had to

apply to A while performing the LU factorisation. Then, we can update b ← Pb,

and consequently can use the regular forward substitution (Lz = Pb) and backward

substitution (Ux = z) routines to get x.

It could still be the case however that there are no rows in A below the diagonal

with which we could swap the given row/diagonal element, and consequently even

with partial pivoting we cannot avoid to divide by zero, so we cannot factorise A

into L and U . In these cases we will need to use the inverse of A to compute Ax = b.

The U matrix we get with the Gaussian elimination is said to be in row echelon

form. This means that all non-zero rows are above any rows of all zeroes, and the

leading coefficient of a non-zero row is always strictly to the right of the leading

coefficient of the row above it.

The cost of LU factorisation is:

• 2
3
n3 flops for A = LU ,
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• n2 flops for Lz = Pb,

• n2 flops for Ux = z.

7.3 Inverse of matrices

As a quick recap:

• if f : R→ R

• and f is a bijection meaning there is a one-to-one relationship between the

two domains

• then f(x) = y has a unique solution for all y ∈ R

• the function that maps y to x as f(x) = y is called the inverse of f , denoted

as f−1 : R→ R

• just as 1
x
× x = x, f(f−1(x)) = x and f−1(f(x)) = x.

Let L : Rn → Rn be a linear transformation, and let A be the matrix tat represents

L. If there exists a matrix B such that AB = I, then L has an inverse, L−1, and B

equals the matrix that represents that linear transformation.

In other words, L has an inverse of and on if there exists a matrix B such that

AB = I. This matrix B is the inverse of A, denoted by A−1.

If AA−1 = I then A−1A = I.

A matrix is said to invertible or nonsingular if its inverse A−1 exists.

The following statements are all equivalent about A ∈ Rn×n:

• A is nonsingular.

• A is invertible.

• A−1 exists.

• AA−1 = A−1A = I.

• A represent a linear transformation that is a bijection.
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• Ax = b has a unique solution for all B ∈ Rn.

• Ax = ej has a solution for all j ∈ 0, ...n− 1.

• The determinant of A is nonzero: det(A)neq0.

Only square matrices could be inverted.

The inverse of a diagonal matrix is just all the elements inverted on the diagonal:

−1 0 0

0 2 0

0 0 1/3


−1

=

−1 0 0

0 1/2 0

0 0 3



The inverse of a Gauss transform could be derived by negating the values below

the diagonal:

−1 0 0

1 1 0

−2 0 1


−1

=

−1 0 0

−1 1 0

2 0 1


Using this observation, we can derive how the Gaussian elimination in fact results

in the same result as the LU factorisation. For an explanation see p. 316 in the

LAFF notes.

The inverse of a permutation matrix is the transpose of it:

0 0 1

1 0 0

0 1 0


−1

=

0 0 1

1 0 0

0 1 0


T

=

0 1 0

0 0 1

1 0 0


The inverse of the rotating linear transformation R(θ) is:

R(θ) =

(
cos(θ) −sin(θ)

sin(θ) cos(θ)

)−1
=

(
cos(−θ) −sin(−θ)
sin(−θ) cos(−θ)

)

And also from trigonometry we know that cos(−θ) = cos(θ), while sin(−θ) =

−sin(θ), so:

R(θ)−1 =

(
cos(θ) sin(θ)

−sin(θ) cos(θ)

)
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In a more general case when we want to solve AB = I:

AB = I = A(bo|b1 . . . |bn−1) = (eo|e1 . . . |en−1),

so for each column of B we want to solve ABj = ej, which is essentially Ax = b.

The inverse of 2× 2 matrix A:(
α0,0 α0,1

α1,0 α1,1

)−1
=

1

α0,0α1,1 − α1,0α0,1

(
α1,1 −α0,1

−α1,0 α0,0

)
,

where α0,0α1,1−α1,0α0,1 is the determinant of the matrix. This method only works

if the determinant is not zero.

Finally some properties of matrix inverses, given A,B and C are invertible and are

of appropriate size:

• (AB)−1 = B−1A−1

• (ABC)−1 = C−1B−1A−1

• (AT )−1 = (A−1)T
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Let BA = C and B be nonsingular. Then it could be proven that A is nonsingular

if and only if C is nonsingular.

This also means, that if we try to perform an LU factorisation with row pivoting on

matrix A, and it fails at some element of the diagonal, (because there isn’t any rows

below that element which are non-zero), then A is singular and cannot be inverted.

8.1 Gauss-Jordan elimination

To solve Ax = b with Gauess-Jordan elimination, we do everything as we would

with the Gaussian elimination, but we not only reduce A to an upper triangular

matrix, but go further in each step. Using the rules introduced in Chapter 6.1, we

reduce all column elements above and below the diagonal to 0. For example: 1 0 0

1 1 0

−2 0 1

 ×
−2 2 −5 −7

2 −3 7 11

−4 3 −7 −9

r2−(−1)r1,r3−(2)r1−−−−−−−−−−−→
−2 2 −5 −7

−1 2 4

−1 3 5

1 2 0

0 1 0

0 −1 1

 ×
−2 2 −5 −7

−1 2 4

−1 3 5

r1−(−2)r2,r3−(1)r2−−−−−−−−−−−→
−2 −1 1

−1 2 4

1 1

1 0 1

0 1 −2

0 0 1

 ×
−2 −1 1

−1 2 4

1 1

r1−(−1)r3,r2−(2)r3−−−−−−−−−−−→
−2 2

−1 2

1 1

37
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−
1
2

0 0

0 −1 0

0 0 1

 ×
−2 2

−1 2

1 1

r1−(−1)r3,r2−(2)r3−−−−−−−−−−−→
χ0 −1

χ1 −2

χ2 1

We can do the exact same thing if we have multiple right sides:

−2 2 −5 −7 8

2 −3 7 11 −13

−4 3 −5 −9 9

Gauss−Jordan−−−−−−−−→
χ0 −1 2

χ1 −2 1

χ2 1 −2

8.2 Gauss-Jordan inverse of a matrix

Using this method above we can compute the inverse of a matrix by reiterating what

we’ve established in Chapter 7:

AX = I

A(xo|x1 . . . |xn−1) = (eo|e1 . . . |en−1)

Axj = ej

So we can solve AX with I: 1 0 0

1 1 0

−2 0 1

 ×
−2 2 −5 1 0 0

2 −3 7 0 1 0

−4 3 −7 1 0 1

=

−2 2 −5 1 0 0

0 −1 2 1 1 0

0 −1 3 −2 0 1

1 2 0

0 1 0

0 −1 1

 ×
−2 2 −5 1 0 0

0 −1 2 1 1 0

0 −1 3 −2 0 1

=

−2 0 −1 3 2 0

0 −1 2 1 1 0

0 0 1 −3 −1 1

1 0 1

0 1 −2

0 0 1

 ×
−2 0 −1 3 2 0

0 −1 2 1 1 0

0 0 1 −3 −1 1

=

−2 0 0 0 1 1

0 −1 0 7 3 −2

0 0 1 −3 −1 1
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−
1
2

0 0

0 −1 0

0 0 1

 ×
−2 0 0 0 1 1

0 −1 0 7 3 −2

0 0 1 −3 −1 1

=

1 0 0 0 −1
2
−1

2

0 1 0 −7 −3 2

0 0 1 −3 −1 1

To check our results, AX = I:−2 2 −5

2 −3 7

−4 3 −7

 ×

 0 −1
2
−1

2

−7 −3 2

−3 −1 1

 =

1 0 0

0 1 0

0 0 1



The last scaling step where we make the left hand side the identity matrix, could

be incorporated into the algorithm so it’s not needed any more:−
1
2

0 0

1 1 0

−2 0 1

 ×
−2 2 −5 1 0 0

2 −3 7 0 1 0

−4 3 −7 1 0 1

=

1 −1 −5
2

1
2

0 0

0 −1 2 1 1 0

0 −1 3 −2 0 1

This made the top left item of the resulting matrix a 1 already. If we continue

like this we don’t have to do the scaling, and we end up with a matrix which is in

reduced row echelon form. This means the matrix is in row echelon form and

every leading coefficient (the first you encounter when you read a row from left to

right) is one, and is the only non-zero entry in its column.

The cost of matrix inversion is 2n3. Since solving Ax = b with matrix inversion,

costs 2n3 + 2n2 flops, and doing it by LU factorisation costs 2
3
n3 + 2n2, we should

almost never invert a matrix for solving such a system as the difference is exactly

3-fold.

Matrix is inversion is incredibly useful in other parts of statistics (like when we want

to compute the precision matrix, which is the inverse of the covariance matrix), but

not for solving Ax = b. The precision matrix AB−1 holds all the partial correlations

between each variable in A and B.
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8.3 Cholesky factorization

The covariance matrix is symmetric positive definite (SPD) and consequently in-

vertible. Let A ∈ Rn×n. Matrix A is said to be SPD if:

• A is symmetric; and

• xTAx > 0 for all nonzero vectors x ∈ Rn.

SPD matrices are useful in an overdetermined system Bx = y where B ∈ Rm×n and

m > n. In other words, when there are more equations than there are unknowns in

our linear system of equations.

When B has linearly independent columns, the best solution to Bx = y satisfies

BTBx = BTy. If we set A = BTB and b = BTy, then we need to solve Ax = b, and

now A is square and nonsingular (which we will prove later in the course).

Now, we could solve Ax = b via any of the methods we have discussed so far.

However, these methods ignore the fact that A is symmetric.

By taking advantage of symmetry, we can factor A akin to how we computed the LU

factorization, but at roughly half the computational cost. This new factorization is

known as the Cholesky factorization.

Let A ∈ Rn×n be a SPD matrix. Then there exists a lower triangular matrix

L ∈ Rn×n such that A = LLT . If the diagonal elements of L are chosen to be

positive, this factorization is unique.
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9 | Vector spaces

We can use the previously learnt LU factorisation for instance, to fit a polyno-

mial. In Figure 9.1 we have a simple problem, with three points to fit: P =

{(−2,−1), (0, 2), (2, 3)}. We can fit a polynomial of the form p(χ) = γ0 +γ1χ+γ2χ
2

to these points by simply solving the following system of equations:

1 −2 −22 −1

1 0 02 2

1 2 22 3

Gauss−Jordan−−−−−−−−→

γ0γ1
γ2

 =

 2

1

−1
4



3 2 1 0 1 2 3
3

2

1

0

1

2

3

4

5

Figure 9.1: Polynomial fitting.

We can see this resulting polynomial

plotted on the right in purple. Alter-

natively, we can think of this problem

as finding the linear combination of

the blue (p0(x) = γ0), green (p1(x) =

γ1χ) and red (p2(x) = γ2χ
2) parent

functions which will all intersect three

points in P .

Since computers are not capable of

thinking about continuous functions,

we discretize these parent functions at

the three x points we have in P, Px =

{−2, 0, 2}, so we end up with three vectors with their values at these points:

p0(Px) =

1

1

1

 , p1(Px) =

−2

0

2

 , p0(Px) =

4

0

4

 .

Eventually we get the exact same system to solve as we had before. If we had a

fourth point we might not get a solution with a 3 degree polynomial e.g. (1, 4). So

in general sometimes Ax = b has a unique solution, sometimes it doesn’t have a

solution at all, and sometimes it has infinite solutions.

42
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9.1 When linear systems have no solutions

If the Gauss-Jordan algorithm introduces an inconsistent equation along the way,

e.g. 1 = 0, then we can be sure that the system has no solution.

Conversely if we end up with an under-determined system, because one of the equa-

tions end up cancelling all variables in it (e.g. 0 = 0), then we have an infinite

amount of solutions:

−2 2 −2 0

2 −3 4 3

4 3 −2 3

Gauss-Jordan−−−−−−−→
χ0 χ2 3

χ1 −2χ2 −3

0 0

Since we have more unknowns than equations, we cannot calculate a unique solu-

tion obviously. But we can find the general solution (also sometimes called the

complete solution) to this system:

χ0 χ2 3

χ1 −2χ2 −3

0 0

Set the χ2 free−−−−−−−−→
variable to β

χ0 χ2 3

χ1 −2χ2 −3

χ2 β

χ0 χ2 3

χ1 −2χ2 −3

χ2 β

Substitute in β−−−−−−−−→
χ0 β 3

χ1 −2β −3

χ2 β

χ0 β 3

χ1 −2β −3

χ2 β

Reorder−−−−→
χ0 3− β

χ1 −3 + 2β

χ2 0 + β

Finally we have the general solution in the form of two vectors:χ0

χ1

χ2

 =

 3

−3

0

 + β

−1

2

1

 .

What is really important that if we plug in the first vector, we get back the original

system: −2 2 −2

2 −3 4

4 3 −2

 ×

 3

−3

0

 =

0

3

3


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whereas if we plug in the second we get a zero vector:−2 2 −2

2 −3 4

4 3 −2

 × β

−1

2

1

 =

0

0

0


And of course no matter what β we choose the result still be a zero vector. So any

vector of the form above is a solution to the system, thus we have infinite amount

of solutions.

9.2 Vector spaces

A vector space is a subset, S of Rn with the following properties:

• 0 ∈ S, meaning the zero vector is in S,

• S is closed under addition and scalar multiplication:

– If v, w ∈ S, then v + w ∈ S,

– If α ∈ S and v ∈ S, then αv ∈ S.

As an example the plane of vectors x =

χ0

χ1

χ2

 where χ0 = 0 is a subspace of R3:

• The null vector is in this subspace: χ1 = 0, χ2 = 0→

0

0

0



• If we choose v =

 0

v1

v2

 , w =

 0

w1

w2

, then v + w =

 0

v1 + w1

v2 + w2

, which is still

in R3.

• If we have v =

 0

v1

v2

 and α ∈ R, then αv =

 0

αv1

αv2

 which is still in R3
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So we conclude that x =

 0

χ1

χ2

 is a subspace of R3.

As another example x =

 1

χ1

χ2

 is not a subspace of R3, because we simply don’t

have the null vector in it, no matter what we set χ1 and χ2.

Also {x|||x||2 < 0} is not a subspace of Rn, because we can easily find an α with

which αx will be longer than 1, and therefore be outside of the defined boundary

< 1.

9.3 Column space and row space

The set S ⊂ Rm described by {Ax|x ∈ Rn}, where A ∈ Rm×n is a subspace. In

other words, the set S holds all vectors that could be acquired by multiplying A by

a vector x. So S is a subspace because:

• We know the zero vector is in the set (0 ∈ S), because if we pick x = 0, then

we get the zero vector.

• Also, if we pick two random vectors in this set v, w ∈ S, then we can show

that (v + w) ∈ S:

– For some, x, y ∈ Rn, v = Ax and w = Ay.

– But then v + w = Ax+ Ay = A(x+ y), which also must be in S.

• Finally if we pick a scalar α ∈ R and a random vector v ∈ S, then αv ∈ S:

– For some x ∈ Rn, v = Ax.

– But then αv = α(Ax) = A(αx), which also must be in S.

The column space of A ∈ Rm×n, equals the set {Ax|x ∈ Rn}. Or in other words,

the set of all vectors that could be achieved by multiplying A by x. It is denoted

by C(A), and it is essentially all the linear combinations we can get by varying

x. Because of this A = Span(a1, a2, . . . , an), where a1, a2, . . . , an are the columns of

A. Also, the column space is often called the range of the matrix.
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As a consequence, the problem Ax = b only has a solution when b ∈ C(A), i.e. when

it is in the column space of the independent variables of A. So as another definition

we can say, the column space of A, C(A), describes the subspace of all vectors b for

which Ax = b has a solution.

The row space is the subspace of all vectors that can be created by taking linear

combinations of the rows of a matrix. In other words, the row space of A equals

C(AT ).

9.4 Null space

As we have seen in section 9.1, when we were trying to identify all possible solutions

to Ax = b, if Axs = b and Axn = 0, then xs + xn is also a solution, because

A(xs + xn) = b. Hence identifying the set pf all vectors such that Ax = 0 is really

important.

The set of all vectors x ∈ Rn that have the property that Ax = 0 is called the null

space of A. It is denoted as N (A) = {x|Ax = 0}. We will skip the proof of why

this is a proper subspace, as it is pretty intuitive.

A’s columns are linearly independent if and only if N (A) = {0}, i.e. when the only

vector in its null space is the zero vector. This because Ax = a1χ1+a2χ2, . . . ,+anχn,

where {a1, a2, . . . , an} are the columns of A and {χ1, χ2, . . . , χn} are the components

of x. So basically we just take a linear combination of A’s columns and we require

it to be zero. As we will see below, this is only possible if those vectors are all

linearly independent, meaning, none of them could be rewritten as a combination of

the rest. In this case all of x’s components have to be zero in order to Ax produce

a zero vector.

We can find the null space of a matrix by reducing it to its reduced row echelon

form and solving for the free variables. Reduced row echelon form could be achieved

by reducing a matrix to its row echelon form, with the added constraints that all

leading coefficients have to be one, and these leading entries have to be the only non

zero entries in their column.

The null space is often called the kernel of the matrix.
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9.5 Span

The span of vectors {v0, v1, ..., vn−1} is the set of all vectors that are a linear combi-

nation of this set. So for example the span of

{(
1

0

)
,

(
0

1

)}
= R2. This is because

we can create every single vector in R2 from te linear combination of those two unit

basis vectors.

So if we look at these vectors as a column of a matrix:

V = {v0|v1|...|vn−1}

then V x is a linear combination of these vectors. The set of all possible vectors

arising from V x is the column space of V , C(V ).

So the span of a set of vectors is the column space of the matrix that has those

vectors as its columns.

Usually a subspace has infinite number of vectors within it. A spanning set of a

subspace is really useful, because using it we can describe, or create all vectors of

the subspace, using only a finite set of vectors.

9.6 Linear independence

Let {v0, v1, ..., vn−1} ∈ Rn. This set of vectors is said to be linearly independent if

and only if

χ0v0 + χ1v1, ..., χn−1vn−1 = 0,

could be only achieved by:

χ0, χ1, ..., χn−1 = 0.

A more formal definition: let {v0, v1, ..., vn−1} ⊂ Rn, and let V = {v0|v1|...|vn−1} .

Then the vectors {v0, v1, ..., vn−1} are linearly independent if and only ifN (V ) = {0}.
So matrix V can only have the zero vector in its null space.

As an example let’s look at the following set of vectors:{(
1

0

)
,

(
0

1

)
,

(
1

1

)}
.



9.7. Bases for subspaces 48

These are linearly dependent, because we can rewrite the 3rd vector as the sum of

the first two. Or to use the 2nd definition:

(
1 0 1

0 1 1

)
×

 1

1

−1

 =

(
0

0

)
.

So we can find a vector that maps to the null space, which is not the zero vector, so

these vectors have to be linearly dependent.

Columns of the identity matrix and a lower or upper triangular matrix

with non-zero diagonal values, are linearly independent.

As generalisation of the above rule is, let {v0, v1, ..., vn−1} ∈ Rm and n > m. Then

these vectors must be linearly dependent. This is because in such a matrix, we

have more columns than rows, which essentially means we have more variables than

equations, which inherently means we have a vector in the null space which is not

the zero vector. As a consequence, if we have a lower triangular matrix with non-

zero diagonal elements, and we add a new row to it, its columns will remain linearly

independent.

So we can now add the following statements to the list of section 7.3 about A ∈ Rn×n:

• A is nonsingular.

• A is invertible.

• LU factorisation with partial pivoting does not break down.

• C(A) = Rn

• A has linearly independent columns.

• N (A) = {0}.

9.7 Bases for subspaces

Let S be a subspace of Rm. Then the set {v0, v1, ..., vn−1} ⊂ Rm is said to be a basis

for S if {v0, v1, ..., vn−1} are linearly independent, and the span of {v0, v1, ..., vn−1}
is S.
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In other words, if we have the smallest possible set of linearly independent vectors,

from which we can create all vectors of S as a linear combination, then this set is

the basis of S.

So if we have a set of vectors {v0, v1, ..., vn−1} ⊂ Rn, and let V = {v0|v1|...|vn−1} be

invertible, then {v0, v1, ..., vn−1} form the basis for Rn.

As an example: 
1

0

0

 ,

0

1

0

 ,

0

0

1




is the basis of R3. This means, that the matrix:

A =

1 0 0

0 1 0

0 0 1


is invertible, so Ax = b, always has a solution, as a linear combination of the columns

of A, which are the unit basis vectors in this case.

Furthermore if we have a set of vectors S ⊂ Rm, then S can only contain m linearly

independent vectors.

9.8 Dimension of a subspace

Every non-trivial (meaning more than just a zero vector) subspace Rm has a basis.

This is not unique, as we can multiply the vectors within this basis and get a new

set of vectors. However, the number of vectors within a basis of a subspace

is always the same. This is the dimension of the subspace.

9.9 Rank of a matrix

Let A ∈ Rm×n. The rank of A, is the number of vectors in a basis for the columns

space of A. In other words the rank of A is the number of linearly independent

columns in A. If rank(A) = n, then A is said to be full rank, which also

inherently means it is invertible.
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squares

Taking the first function, from our 2 degree polynomial from Chapter 9 again:

1 −2 −22 −1

1 0 02 2

1 2 22 3

→ χ0 − 2χ1 + 4χ2 = −1,

we can solve it by calculating first a specific solution by setting χ1, χ2 free variables

to zero:

Xs =

χ0

0

0

 .

We do this arbitrarily because it is easy to compute with zero. The solution then is:

Xs =

−1

0

0

 .

What we do next to find a solution that maps to zero so we set the two right hand

side of the equation to zero, and pick the free variables χ1, χ2:

Xn0 =

χ0

1

0

 , Xn1 =

χ0

0

1

 .

If we do that we end up with two linearly independent vectors that are in the null

space, which is a plane in this case:

Xn0 =

2

1

0

 , Xn1 =

−4

0

1

 .

50
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The general solution then is:

Xgeneral = Xs + αXn0 + βXn1 .

Figure 10.1: Plane of solutions.

The plane of the null space is shown in Figure

10.1, and the strong black arrow, represents Xs.

The red vector is Xn1 which is about twice as

long as the blue one Xn0 , but they both lie in

the red plane of the null space. So if we offset

this red plane by the Xs vector, we get the visual

representation of the general solution, which is

the plane in which all vectors of the free variables

χ1, χ2 must lie.

Figure 10.2

If we would orthogonalise Xn0 and Xn1 , the figure would

look even nicer, but the main point is, no matter what

we plug into the equation to get Xs we will have the same

general solution.

Finally, if we would visualise the plane of each equation,

we would get Figure 10.2. Here each plane represents the

solutions of a given equation. The solutions of just two

out of the three equations are represented as dashed lines.

As we have three equations we have three of those, and

where they intersect is the final solution to the system:

X =

 2

1

−0.25

 .

10.1 Important attributes of a linear system

Let’s say we have a linear system that we reduced to row echelon form:

A =

1 3 1 2 1

2 6 4 8 3

0 0 2 4 1

Gaussian−−−−−−→
elimination

Ar =

1 3 1 2 1

0 0 2 4 1

0 0 0 0 0

.
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Then, this system has the following properties:

• The pivots are the leading coefficients in χ0, χ2: 1 and 2. Consequently χ0

and χ2 are the so called dependent or basic variables, while the others χ1

an dχ3 are the free variables.

• A specific solution could be found by setting the free variables to 0, and

solving for the dependent variables. In this case that works out to be χ0 =
1
2
, χ2 = 1

2
.

• The basis for the null space could be found by setting the right hand side

of the appended system to 0. Then to find the first vector of the basis we set

the first free variable to 1, and the second to 0, then vice versa. This way for

every variable we can find a vector in the null space.

• A general solution could be described by adding a linear combination of

the null basis vectors to the specific solution we found earlier: Xgeneral =

Xs + β0Xn0 + β1Xn1 .

• A dimension of the basis for the column space equals the number of linearly

independent variables in the system. To find the vectors of the basis for C(A),

we simply take the columns of A which have pivots in Ar:1

2

0

 ,

1

4

2

 .

• The basis for the row space could be found by taking the transposed rows

of Ar where we have pivots (i.e. the non zero rows for the basis of the row

space): 
1

3

1

2

 ,


0

0

2

4

 .

• The dimension of the column space = the dimension of the row space

= the rank of the matrix = k = the number of pivots we have.

• The dimension of the null-space = n− k
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10.2 Orthogonal vectors and spaces

Vectors x, y ∈ Rn are orthogonal (perpendicular) if and only if their dot/inner

product is zero: xTy = 0.

We can extend this to subspaces. Let V,W ⊂ Rn be subspaces. V andW are said

to be orthogonal if v ∈ V and w ∈W implies that vTw = 0.

In other words if all vectors from V are orthogonal to all vectors from W, then

V⊥W.

This means that if V⊥W, then V ∩ W= {0}, the zero vector. Also if V∈ Rm is a

subspace, then V⊥ is a subspace.

10.3 Fundamental spaces

If we have a matrix A ∈ Rm×n that maps vectors from Rn to Rm, with r pivot

points, then there are four fundamental subspaces we need to know about:

• Column space: C(A) ⊂ Rm. Its dimension is: r.

• Null space: N (A) ⊂ Rn. Its dimension is: n− r.

• Row space: R(A) ⊂ Rn or C(AT ) ⊂ Rn. Its dimension is: r.

• Left null space: N (AT ) ⊂ Rm. Its dimension is: m− r.

The columns space and the left null space are in Rm so they are on the right hand

side in Figure 10.3, whereas the row space and the null space are in Rn and on the

left hand side of the figure.

Two very important theorems:

1. Let A ∈ Rm×n. Then R(A) ⊥ N (A).

• Taking any two vectors y ∈ R(A) and z ∈ N (A), yT z should be zero.

• We can use the fact if y ∈ R(A) it also means y ∈ C(AT ). So y = ATx for

some x ∈ Rm, meaning y is just some linear combination of the columns

of AT .
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• So yT z → (ATx)T z → xTAz

• Since z is in the null space of A, then Az must be a zero vector, therefore:

• xTAz → xT0→ 0.

2. Let A ∈ Rm×n. Every x ∈ Rn can be written as x = xr +xn, where xr ∈ R(A)

and xn ∈ N (A). This is because dim(R(A)) = r and dim(N (A)) = n − r,
and it could be proven that all r + (n− r) = n vectors within their bases are

linearly independent. So there is n linearly independent vector in these bases

so they must form the basis for Rn.

Figure 10.3: Fundamental spaces.

About this figure:

• Matrix A ∈ Rm×n that maps vectors from Rn to Rm.

• To illustrate that, we have a vector in Rn, called x.

• A takes x to b, which is now in Rm.
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• So b must be in the column space of A, because we just got from x to b by

taking the linear combinations of the columns of A.

• There is also a row space and the as the zero vector is part of every subspace

it is in both the row space and column space of A. It is denoted as little 0 in

the bottom right corner of these spaces.

• Furthermore the first theorem proved us that the null space of A has to per-

pendicular to the row space of A, hence the right-angle sign between the two

rectangles.

• This orthogonality is also present between the column space of A and the left

null space of A.

• The second theorem told us that any vector x ∈ Rn can be written as a vector

in the row space of A plus the vector in the null space of A. This denoted as

x = xr + xn.

• We know that the vector in the null space of A is mapped by A to the zero

vector. Denoted by the vector Axn = 0.

• Focusing on the bottom box, and combining the above points, we can see how

Axr must take us to b as well.

• So A is a one-to-one mapping between the row space and the column

space of A.

This figure tells us everything about what happens when we perform Ax = b, and

helps us to come up with an approximation to the real solution, when Ax = b does

not have a solution. This is known as the linear least squares.

10.4 Linear least squares approximation

As we can see in Figure 10.4, in the real word, we often cannot easily fit a polynomial

through our data-points, and more often than not, we would like to fit a simple linear

line to our data, to get a sense of the trend. So since b /∈ C(A), we cannot write

Ax = b, but instead we aim for Ax ≈ b.



10.4. Linear least squares approximation 56

Figure 10.4: Example of a LLS problem.

Figure 10.5: b /∈ C(A).

If we take an even simpler example with just

three data-points, and we visualise the column

space of A in 3D (which is just a thin purple line

in this figure due to the chosen viewing angle),

as shown in Figure 10.5, then we clearly see, that

b /∈ C(A). But we also see that there is a vector

z which is in the column space of A. The point

z points to within C(A), is the closest possible

solution (Ax ≈ b) to b. We can also see, that

b = z + w and that z ⊥ w.

Putting all this together, and using Figure 10.3 as well:

• We want to solve Ax ≈ b.

• Let x̂ be the best solution.

• b = z + w, where z ∈ C(A) and w ∈ C(A)⊥.

• We know that we can solve Ax = b for b ∈ C(A).

• We also know that the left null space is orthogonal to the column space of A,

and that the left null space of A is the same as the null space of AT . So we

can move around the fundamental spaces as w ∈ C(A)⊥ ⇒ w ∈ Nleft(A) ⇒
w ∈ N (AT ). This means that ATw = 0.

• Since w = b− z → AT (b− z) = 0.
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• But notice that z = Ax̂, i.e. the point in the column space for which we want to

compute our best approximate solution. So AT (b−Ax̂) = 0→ AT b−ATAx̂ =

0→ ATAx̂ = AT b

• With that we derived the normal equation: ATAx̂ = AT b.

• We can solve this as long as ATA is nonsingular, which is true if A has linearly

independent columns.

• So we can solve for x̂ by computing (ATA)−1AT b. But we should almost never

invert a matrix, so it is better to calculate ATA and do an LU or Cholesky

factorisation to solve it.

• Remember that x̂ is just our vector of

(
γ0

γ1

)
. So we can plot the line of least

squares regression using that two coefficients, but if we want our original data

projected onto that line we need to compute b̂ = Ax̂. This is known as the

orthogonal projection of b onto the column space of A, which in our toy

example, and in Figure 10.5 is z ∈ C(A).

• Then we can easily calculate residuals as b− b̂.

Linear least squares essentially minimises the squared residuals: ||b −
Ax̂||2 = minx||b−Ax||2 as the name suggests. So to stick to the previous notation, it

tries to find z that has the shortest possible corresponding perpendicular w, between

z and b.



11 | Orthogonal projection and low

rank approximation

11.1 Projecting a vector onto a subspace

Looking at Figure 11.1, we see two vectors a, b ∈ Rm. The span of a is the column

space of a matrix, which has only one column, which is the a vector in this case.

Figure 11.1: Orthogonal projection

Then we also have two components, z

that points in the direction of a, and

w that is orthogonal to a, so b = z+w,

and z is just some scalar times a, so

z = χa.

So putting it all together, we know

that aTw = 0 since they are perpen-

dicular, so: 0 = aT (b − z) = aT (b −
χa) = aT b− χaTa→ aTaχ = aT b.

This is exactly the same formula we

ended up with in the previous least

squares fitting chapter.

Then we can solve for χ by:

χ = (aTa)−1aT b.

If we want to know z, i.e. the projection of b into the column space of a, we calculate:

z = χa = a(aTa)−1aT b,

where a(aTa)−1aT is the matrix that projects any vector onto the space spanned by

the vector a. Finally if we want to know the the orthogonal component to z, we

58
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calculate:

w = b− z = b− a(aTa)−1aT b
bring b−−−−→
outside

(I − a(aTa)−1aT )b,

where (I − a(aTa)−1aT ) is a matrix that projects any vector onto the orthogonal

space of the span of a.

The really neat thing is that we end up with the same formulas if we want to project

a vector into the column space of a matrix A, given it has linearly independent

columns:

• z = Ax

• ATAx = AT b

• x = (ATA)−1AT b

• z = A(ATA)−1AT b

• w = (I − A(ATA)−1AT )b

Given a, x ∈ Rm, let Pa(x) and P⊥a (x) be the projection of vector x onto Span({a})
and Span({a})⊥. Then the following are true:

• Pa(a) = a

• Pa(χa) = χa

• P⊥a (χa) = 0, the zero vector.

• Pa(Pa(x)) = Pa(x)

• Pa(P⊥a (x)) = 0, the zero vector.
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11.2 Vector projection and the dot product

In Figure 11.2, we project ~v into the column space of ~s. The resulting vector

~p ∈ {c~s|c ∈ R}, meaning ~p will basically be ~s times a constant c.

Figure 11.2

We can also see that (~v − ~p) is perpendicular

to ~s.

Because of this their inner product has to be

0: (~v − ~p) · ~s = 0→ (~v − c~s) · ~s = 0.

By distributing s and reorganising we get:

c =
~v · ~s
~s · ~s

.

Since the resulting vector ~p ∈ {c~s|c ∈ R}, the projection of ~v onto ~s is:(
~v · ~s
~s · ~s

)
~v

If ~s is a unit vector, then this simplifies to (~v · ~s)~s. Notice also, that this expression

is the same as the one we derived in the previous section: χ = (aTa)−1aT b, because

(aTa)−1 = 1
(aT a)−1 .

The inner product of two vectors is vT s = ||v||2||s||2 cos(θ), where ||v||2 cos(θ) = ~v · ~su
is called the scalar projection of ~v onto ~s and is equal to the length of the orthogonal

projection of ~v on ~s, and where ~su represents the unit vector in the direction of ~s.

So the dot product of two vectors express the amount of shared directionality in a

sense.

Importantly, if ~s is not a unit vector, then ||v||2 cos(θ) = ~v·~s
|~s| , or in other words,

we need to normalise ~s for this to hold.

Finally if we have a unit vector in say R2, then we can calculate a matrix A that

will project anything onto it. ~s could be described as a linear combination of its

unit basis vectors, which are

(
1

0

)
,

(
0

1

)
in R2. Since we have a unit vector, the

projection formula is (~v · ~s)~s, which now could be simply rewritten as A~x, where
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A = I · ~s · ~s. So:

A =

(
s21 s1s2

s1s2 s22

)
,

so no matter what ~s we pick, we can calculate this matrix, and then project any

other vector in R2 onto its column space, i.e. line.

11.3 Rank-1 approximation

If we have a black and white picture (to make things easier), where every pixel is

characterised by a real value, corresponding to the given pixel’s intensity, then we

can think of such a picture as a matrix of numbers.

If now we partition this matrix B into its columns: B = (b0|b1|...|bn−1) and pick

a = b0, we can project any other column onto the Span({a}) with the previously

introduced a(aTa)−1aTx, where x ∈ B.

If we would take the first few columns of the matrix and plot their values against their

i position, we would see a few plotted lines that are really similar. This is because,

usually high-definition images don’t change rapidly from pixel to pixel as we move

from left to right. So if we project b1 onto the Span({b0}): a(aTa)−1aT b1 ≈ b0,

meaning we get a vector that is very similar or approximately equal to b0.

We could do this for every one of the columns ofB: a(aTa)−1aTB, where (aTa)−1aTB =

((aTa)−1BTa)T = y, and since (aTa)−1 is just a scalar, BTa is a row vector times

a matrix which is a row vector, we get a(aTa)−1aTB = ayT . So this projection is

really just the outer product of a column vector (a) and a row vector (yT ).

This is known as the rank-1 approximation of B, where every column is just a scalar

multiple of yT , where y = (aTa)−1BTa. This rank-1 approximated matrix has a

rank of 1 (hence the name), because if we have two vectors u ∈ Rm, and v ∈ Rn,

then their m× n outer product matrix formed by uvT has a rank of at most one. It

can also have zero rank if either of those vectors are zero vector, but not more than

one.
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11.4 Rank-k approximation

Rank-k approximation follows logically from the above. Instead of projecting onto

the column space of a single vector, i.e. Span({a}), we can take k columns of the

picture/matrix B, form a matrix from them A and project the whole picture B onto

C(A), with: AY T , where Y = ((ATA)−1ATB)T = BTA(ATA)−1.

This approximated matrix will have a rank of k, because let U ∈ Rm×k and V ∈
Rn×k, then the m×n matrix UV T has a rank of at most k. The code below produces

the various k rank approximations of an image.

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import matplotlib.cm as cm

4 from scipy import misc

5

6 # load the picture of lena

7 lena = misc.lena()

8 cols = lena.shape [1]

9 # approximate with the following ranks

10 ranks = [8, 32, 64, 256]

11 ranks_cols = [range(0,cols , cols/x) for x in ranks]

12

13 # setup image

14 fig , axes = plt.subplots (2,2)

15 fig.set_figheight (8.27)

16 fig.set_figwidth (8.27)

17

18 for i, ax in enumerate(axes.flat):

19 l = l=lena[:, ranks_cols[i]]

20 ATA = np.dot(l.T, l)

21 ATAinv = np.linalg.pinv(ATA)

22 AATAinv = np.dot(l, ATAinv)

23 ATB = np.dot(l.T, lena)

24 image = np.dot(AATAinv , ATB)

25 ax.imshow(image , cmap=cm.gray)

26 ax.set_title(’Rank ’+ str(l.shape [1]))

27 fig.savefig(’rankkapprox.pdf’, dpi=300,

28 bbox_inches=’tight ’, pad_inches =0)
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Figure 11.3: Rank-k approximations of the original 512× 512 image.

11.5 Orthonormal vectors

Let a0, a1, ..., an−1 ∈ Rm. Then these vectors are mutually orthonormal if for all

0 ≤ i, j < k:

qTi qj =

{
1 = if i = j

0 = otherwise

The first equation basically says that if they are parallel, then their dot product is

1, which can only happen if their length is one, so orthonormal vectors are mutually
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perpendicular and have a length of one.

Orthogonal vectors like: (
−1

1

)
,

(
1

1

)
could be turned into orthonormal, by normalising their length to 1, which in this

case just means dividing each component by
√

2:(
−1√
2
1√
2

)
,

(
1√
2
1√
2

)
.

The following vectors are mutually orthonormal:(
− sin(θ)

cos(θ)

)
⊥

(
cos(θ)

sin(θ)

)
and

(
sin(θ)

cos(θ)

)
⊥

(
cos(θ)

− sin(θ)

)

Here’s an interesting two way relationship between orthonormal vectors and the

identity matrix.

• Let Q ∈ Rm×n (with n ≤ m), and QTQ = I, then the columns of Q =

(q0|q1|...|1n−1) are mutually orthonormal.

• This is true in the other direction as well: if we have a set of mutually or-

thonormal vectors q0, q1, ..., qn−1 then the matrix Q we form from these have

the property: QTQ = I.

Projecting a vector x onto the Span({q}) of a unit vector

• Remember for a non-unit vector (length neq1) the matrix that projects onto

the column space of the vector a is a(aTa)−1aT .

• In this case, this is q(qT q)−1qT , but since ||q||2 = 1, (aTa)−1 = 1, so the

expression simplifies to qqT .

• So projecting x onto the Span({q}) is simply qT qx that we can reorder as

qTxq.

Following the previous point, let Q ∈ Rm×n have orthonormal columns, then:



11.6. Orthonormal bases 65

• The matrix that projects onto C(C) is simply QTQ.

• This is because in the equation Q(QTQ)−1QT , the term (QTQ)−1 = I, because

Q is an orthonormal matrix, so QTQ = I as we have shown before.

• Furthermore, the matrix that projects onto the orthogonal column space of Q,

C(C)⊥ is simply I −QQT .

• This is because in the expression I −Q(QTQ)−1QT , the term (QTQ)−1 = I so

it could be simply left out.

11.6 Orthonormal bases

We have three linearly independent vectors as shows in 11.4:

a0 =

1

1

1

 , a1 =

1

2

3

 , a2 =

−1

−2

2

 .

We would like to find three orthonormal vectors q0, q1 and q2, such that

Span({q0, q1, q2}) = Span({a0, a1, a2}).

This could be achieved with the Gram-Schmidt orthogonalisation. As we can

see in Figure 11.4, in this example, a0 and a1 span the blue plane, while a2 sticks

out of it.

Step 1 - Compute q0:

• Normalise a0: calculate its length as ρ0,0 = ||a0||2, and divide it by this:

q0 = a0/ρ0,0. In this example ρ0,0 =
√

(3).

• The resulting vector could be seen in 11.5 as a thick vector pointing in the

same direction as a0.

Step 2 - Compute q1:

• Remember, we want q1 to be perpendicular to q0, look at Figure 11.6.
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Figure 11.4 Figure 11.5

• As we see in Figure 11.6, the component of a1 in the direction of q0 is given

by qT0 a1q0, because q0 is already a unit vector, so no need to divide by qT0 q0.

• ρ0,1 := qT0 a1 represents the scalar by which we need to scale q0 to get a1’s

orthogonal projection onto the line of q0.

• a⊥1 = a1 − qT0 a1q0, which is perpendicular to q0, so we want that to be q1.

• All we need to do is normalise it: q1 = a⊥1 /ρ1,1, where ρ1,1 = ||a⊥1 ||2.

• Now we have q0 and q1 which span the same space as a0 and a1 but they are

mutually orthonormal.

Figure 11.6 Figure 11.7

Step 3 - Compute q2:
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• As we can see in Figure 11.7 a2 is not in the blue plane spanned by q0 and q1.

• But we can compute the projection of a2 onto that plane.

• To do that, we need to project a2 onto C(Q(2)), which is a matrix with two

columns: q0 and q1. Then we can also compute a⊥2 by subtracting the projec-

tion of a2 from a1, just as we did before with a⊥1 .

• a⊥2 = a1 − (q0q1)(q0q1)
Ta2, where (q0q1)(q0q1)

T = Q(2)Q(2)T .

• Alternatively we can do this in two steps:

– Compute ρ0,2 := qT0 a2 and ρ1,2 := qT1 a2, which are the scalers of the

projections of a2 onto q0 and q1, and which is just Q(2)T a1.

– Then take the linear combinations of those with q0 and q1 and subtract

it from a2: a
⊥
2 = a2 − ρ0,2q0 − ρ1,2q1.

– Essentially take vector a2 and subtract out the component in the direction

of q0 (ρ0,2q0) and then from q1 (ρ1,2q1).

• Finally we need to do is normalise it: q2 = a⊥2 /ρ2,2, where ρ2,2 = ||a⊥2 ||2.

Naturally the Gram-Schmidt process could be continued to infinite number of di-

rections orthogonalising all linearly independent vectors in the original set.

If we use the second method, where we subtract each previously calculated orthogo-

nal vector’s component from ak, then the calculation of the ρ factors could be posed

as a matrix-vector multiplication:

ρ0,k := qT0 ak

ρ1,k := qT1 ak
...

ρk−1,k := qTk−1ak




ρ0,k

ρ1,k
...

ρk−1,k

 :=


qT0

qT1
...

qTk−1

 ak = (q0| . . . |qk−1)Tak

Then the calculation of the kth orthonormal vector becomes:

a⊥k := ak − ρ0,kq0 − ρ1,kq1 − ...− ρk−1,kqk−1.

This, again, could be written in a matrix-vector multiplication:
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a⊥k := ak − (q0| . . . |qk−1)


ρ0,k

ρ1,k
...

ρk−1,k


This will be very important in the QR factorisation.

11.7 QR factorisation

Besides the LU and Cholesky factorisation the QR factorisation is the 3rd really

important matrix decomposition in this course. The problem is still the same, we

have n linearly independent vectors (a0|a1| . . . |an−1), for which we would like to

derive an orthonormal basis.

As we have seen earlier, with the Gram-Schmidt orthogonalisation, this could be

written as:

(ρ0,0q0|ρ0,1q0 + ρ1,1q1| . . . |ρ0,n−1q0 + ρ1,n−1q1) + . . .+ ρn−1,n−1qn−1,

or in matrix form:

QR = (q0|q1| . . . |qn−1)


ρ0,0 ρ0,1 . . . ρ0,n−1

0 ρ1,1 . . . ρ1,n−1
...

...
. . .

...

0 0 . . . ρn−1,n−1



Notice that the R matrix is upper triangular. We calculated the exact same q vectors

and ρ scalar coefficients with the Gram-Schmidt, but arranging everything in matrix

form makes it really easy to get back A = QR.

We can use this in the linear least squares problem Ax ≈ b. First we perform the QR

factorisation of A, and we get A = QR, where QTQ = I,since Q has orthonormal

basis.

• Remember that x = (ATA)−1AT b

• Substituting in A = QR, we get x = ((QR)T (QR))−1(QR)T b
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• Remember that (QR)T = RTQT with any matrix, so we get

• x = (RTQTQR)−1RTQT b, where QTQ = I and falls out.

• x = (RTR)−1RTQT b = R−1R−TRTQT b

• Here R−TRT = I so we are left with:

• x = R−1QT b

Instead of actually inverting, we can multiply by R, so for Ax ≈ b we get Rx = QT b.

This is a nice alternative to the normal equation for LLS problems.

11.8 Change of basis

If Q ∈ Rn×n has mutually orthonormal columns then which of the following are true:

• QTQ = I

• QQT = I

• QQ−1 = I

• Q−1 = QT

Figure 11.8

Let’s say we have a vector b, which is the

red one in Figure 11.8. We have some or-

thonormal basis for the subspace b is in,

and we want to express b as a linear compo-

nent of those unit basis vectors q0 and q1.

Notice these have been normalised to make

them orthonormal, hence the
√

2 term be-

fore their coordinates.

All we need to do then to calculate the new

components of b, is shown below the graph. We are simply projecting b onto the

1st then 2nd unit basis vector. Then, by subtracting one from the other we get

3
√

2q0 −
√

2q1.
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If we have an arbitrary basis for Rn, we can rewrite it as a linear combination of its

unit basis vectors:

b =


β0

β1
...

βn−1

 = β0e0 + β1e1 + . . .+ βn−1en−1.

Then we want to represent this space in a different space, for which we have the

basis vectors (a0 . . . an−1). Then all we need to do is find the coefficients (χ0 . . . χn−1)

that makes this true:

b = β0e0 + β1e1 + . . .+ βn−1en−1

= χ0a0 + χ1a1 + . . .+ χn−1an−1

If we represent the linearly independent vectors (a0 . . . an−1) of the new basis, as a

matrix A, this will be invertible, since its columns are linearly independent vectors.

So we can rewrite the equation: b = AA−1b = Ax, because AA−1 = I.

So we can simply solve Ax = b or x = A−1b to get x and perform the basis change.

If the original basis we start with is orthonormal and we just rotate the basis to get

another orthonormal basis, then the calculation becomes even easier: b = QQ−1b =

QQT b.
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11.9 Singular Value Decomposition

This is one of the most important topics in linear algebra. Unfortunately this in-

troductory course does not cover it deeply, so make sure to read up on it and check

other sources.

Going back to our example rank-k approximation example, let B ∈ Rm×n. Then

the singular value decomposition states, that:

B = UΣV T

• U ∈ Rm×r and UTU = I.

• Σ ∈ Rr×r is a diagonal matrix whit positive diagonal elements that are ordered

so that σ0 ≥ σ1 ≥ . . . ≥ σr−1 ≥ 0.

• V ∈ Rn×r and V TV = I.

• r equals the rank of matrix B.

Writing this out in matrix form:

B = UΣV T

= (u0|u1| . . . |ur−1)


σ0 0 . . . 0

0 σ1 . . . 0
...

...
. . .

...

0 0 . . . σr−1

 (v0|v1| . . . |vr−1)

= σ0u0v
T
0 + σ1u1v

T
1 + . . .+ σr−1ur−1v

T
r−1

So as we can see in the last equation, all we do is take a scalar (sigma0) times a

column vector (u0) times a row vector (vT0 ), and then another scalar (sigma1) times

a column vector (u1) times a row vector (vT1 ), etc. u0v
T
0 is just an outer product, so

with every added term we add/reconstruct more and more detail of the original B

matrix.

Since the diagonal values in Σ are ordered from highest to lowest, we start with

the most important rank updates, and continue towards the least important ones.

So unlike in the rank-k approximation, where we randomly selected some columns
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to reconstruct the original matrix, here we have a clear order in which we have to

add the column. This is highlighted below in Figure 11.9, where we have the same

image in each row, reconstructed with the same number of columns, with rank-k

approximation on the left and SVD on the right. Generated by the following code:

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import matplotlib.cm as cm

4 from scipy import linalg as la

5 from scipy import misc

6

7 # load the picture of lena , define ranks

8 lena = misc.lena()

9 cols = lena.shape [1]

10 ranks = [8, 32, 64, 128]

11 ranks_cols = [range(0,cols , cols/x) for x in ranks]

12

13 # perform SVD on lena

14 u, sv, v = la.svd(lena)

15 # create diagonal matrix from the returned singular values

16 s = np.zeros((lena.shape))

17 s[np.diag_indices(lena.shape [0])] = sv

18

19 # setup image

20 fig , axes = plt.subplots (4,2)

21 rank_axes = [0,2,4,6]

22 fig.set_figheight (11.69)

23 fig.set_figwidth (8.27)

24 for ind , ax in enumerate(axes.flat):

25 i = ind/2

26 if ind in rank_axes:

27 l = l=lena[:, ranks_cols[i]]

28 ATA = np.dot(l.T, l)

29 ATAinv = la.pinv(ATA)

30 AATAinv = np.dot(l, ATAinv)

31 ATB = np.dot(l.T, lena)

32 image = np.dot(AATAinv , ATB)

33 ax.imshow(image , cmap=cm.gray)

34 ax.set_title(’Rank ’+ str(l.shape [1]))

35 else:

36 r = ranks[i]

37 sub_u = u[:,:r]

38 sub_s = s[:r,:r]

39 sub_v = v[:r,:]

40 image = np.dot(np.dot(sub_u , sub_s),sub_v)

41 ax.imshow(image ,cmap=cm.gray)

42 ax.set_title(’Rank ’+ str(r))

43 fig.savefig(’rank_k_vs_svc.pdf’, dpi=300,

44 bbox_inches=’tight ’, pad_inches =0)
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Figure 11.9: Rank-k approximations (left column) vs SVD. (right column)
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Figure 11.10: SVD as three transformations.

We can clearly see in Figure

11.9, that with fewer ranks

SVD does a much better job at

reconstructing the details of the

image. This is because SVD

with rank k, is mathematically

the best possible approximation

of B, while rank-k approxima-

tion is suboptimal.

We can think of SVD of a 2D

shearing matrix M as a three

step transformation: rotation

→ scaling → rotation. Have a

look at Figure 11.10.

A really important result of linear algebra is the eigendecomposition or sometimes

spectral decomposition is the factorization of a matrix into a canonical form, whereby

the matrix is represented in terms of its eigenvalues and eigenvectors.

This topic and its importance is covered in the next chapter, however, he we have

to point out how the eigendecomposition of a diagonalizable matrix M relates to

the SVD of MTM and MMT :

• The left-singular vectors of M , which are the columns of U are eigenvectors of

MMT .

• The right-singular vectors of M , which are the columns of V are eigenvectors

of MTM .

• The non-zero singular values of M, which are the diagonal entries of Σ, are the

square roots of the non-zero eigenvalues of both MTM and MMT .

Finally we can use SVD to solve the LLS problem, because A = UΣV T and we want

to solve Ax ≈ b so we can substitute in, and simplify, and we get x = V TΣ−1UT b,

where notice that the matrix we need to invert is a diagonal one, so this is a trivial

and computationally cheap step.



12 | Eigenvalues and eigenvectors

In section 4.1 we saw this table for weather prediction. We can get from today’s

weather to tomorrow’s with the probabilities shown.

Weather today
Weather tomorrow Sunny Cloudy Rainy

Sunny 0.4 0.3 0.1
Cloudy 0.4 0.3 0.6
Rainy 0.2 0.4 0.3

Table 12.1: Possibilities of changing weather

Predicting the weather a week from now, consists of taking a day, i.e. cloudy to

start of with: 0.3

0.3

0.4


Then we multiply the transition matrix by it:0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3


0.3

0.3

0.4

 =

0.25

0.45

0.3

 .

If we do this for a weak, we will get:

d5 =

0.2632

0.4207

0.3160

 , d6 =

0.2621

0.4211

0.3157

 , d7 =

0.2632

0.4210

0.3158

 ,

for day 5, 6 and 7. And we can see that the vector is converging to a stationary

probability vector. The starting vector doesn’t matter, we will settle on the same

vector if we perform enough iterations.

Eventually, the state vector for tomorrow will be the state vector of today: xk+1 ≈
Px(k). Then the question becomes, is there such vector that Px = x, because that

75
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would describe the typical weather, i.e. the stationary distribution of the Markov

chain.

This is an example of the algebraic eigenvalue problem:

Ax = λx,

where x is vector, λ is a scalar, and A ∈ Rn×n is a square matrix. In fact it has

to be a square matrix, because Ax has to have the same dimensions as x. So we

want to find the eigenvalues λ, of which there are a maximum of n, and the non-zero

eigenvectors for our A matrix. These eigenvectors are not unique so we will want to

give a general solution to describe them.

12.1 Intuition behind eigenvectors and PCA

This material is from this and this site.

If we imagine A to be a 2D linear transformation matrix (which it is), that acts on a

subspace by transforming (rotating, shearing, skewing, scaling) it as a gust of wind

shown in Figure 12.1, then the eigenvector will show us the direction the matrix is

blowing in.

Figure 12.1: Eigenvectors of a subspace

So out of all the vectors affected by a matrix blowing through one space, which one is

the eigenvector? It’s the one that doesn’t change direction; that is, the eigenvector is
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already pointing in the same direction that the matrix is pushing all vectors toward.

An eigenvector is a like a weathervane. The definition of an eigenvector, therefore,

is a vector that responds to a matrix as though that matrix were a scalar coefficient.

You might also say that eigenvectors are axes along which linear transformation

acts, stretching or compressing input vectors. They are the lines of change that

represent the action of the larger matrix, the very “line” in linear transformation.

Because eigenvectors distil the axes of principal force that a matrix moves input

along, they are useful in matrix decomposition; i.e. the diagonalisation of a matrix

along its eigenvectors. Because those eigenvectors are representative of the matrix,

they perform the same task as the autoencoders employed by deep neural networks.

To quote Yoshua Bengio:

Many mathematical objects can be understood better by breaking them

into constituent parts, or finding some properties of them that are uni-

versal, not caused by the way we choose to represent them.

For example, integers can be decomposed into prime factors. The way

we represent the number 12 will change depending on whether we write

it in base ten or in binary, but it will always be true that 12 = 2× 2× 3.

From this representation we can conclude useful properties, such as that

12 is not divisible by 5, or that any integer multiple of 12 will be divisible

by 3.

Much as we can discover something about the true nature of an integer

by decomposing it into prime factors, we can also decompose matrices in

ways that show us information about their functional properties that is

not obvious from the representation of the matrix as an array of elements.

One of the most widely used kinds of matrix decomposition is called

eigen-decomposition, in which we decompose a matrix into a set of eigen-

vectors and eigenvalues.

So when we do PCA on dataset, we calculate the covariance matrix first, and then the

eigenvalues and eigenvectors of that. The great thing about calculating covariance is

that, in a high-dimensional space where you can’t eyeball intervariable relationships,

you can know how two variables move together by the positive, negative or non-

existent character of their covariance. The covariance matrix defines the shape of the

data. In Figure 12.2, we see various relationships between two random variables: X1
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andX2. Top-left: positive correlation, top-right: negative correlation, bottom: no

correlation. The diagonal spread along eigenvectors is expressed by the covariance,

while x-and-y-axis-aligned spread is expressed by the variance.

Figure 12.2

Finding the eigenvectors and eigenvalues of

the covariance matrix is the equivalent of

fitting those straight, principal-component

lines to the variance of the data. Why? Be-

cause eigenvectors trace the principal lines

of force, and the axes of greatest variance

and covariance illustrate where the data is

most susceptible to change.

If a variable changes, it is being acted upon

by a force known or unknown. If two vari-

ables change together, in all likelihood that

is either because one is acting upon the

other, or they are both subject to the same hidden and unnamed force.

Figure 12.3

When a matrix performs a linear transfor-

mation, eigenvectors trace the lines of force

it applies to input; when a matrix is pop-

ulated with the variance and covariance of

the data, eigenvectors reflect the forces that

have been applied to the given. One applies

force and the other reflects it.

Eigenvalues are simply the coefficients at-

tached to eigenvectors, which give the axes

magnitude. In this case, they are the mea-

sure of the data’s covariance. By ranking

your eigenvectors in order of their eigenval-

ues, highest to lowest, you get the principal components in order of significance.

When we do least squares fitting to a given dataset, we want to minimise the residual

errors:
∑N

i=0(f(xi)− yi)2. With only one predictive variable, this means minimising

the vertical distance between our regression line and the data points. data-points,

as show in Figure 12.3

However, in the context of feature extraction, one might wonder why we would define
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feature x as the independent variable and feature y as the dependent variable. In

fact, we could easily define y as the independent variable and find a linear function

f(y) that predicts the dependent variable x, such that
∑N

i=0(f(yi)−xi)2 is minimized.

Figure 12.4

Clearly, the choice of independent and

dependent variables changes the resulting

model, making ordinary least squares regres-

sion an asymmetric regressor. The reason

for this is that least squares regression as-

sumes the independent variable to be noise-

free, whereas the dependent variable is as-

sumed to be noisy. However, in the case of

classification, all features are usually noisy

observations such that neither x or y should

be treated as independent. In fact, we would

like to obtain a model f(x, y) that minimizes

both the horizontal and the vertical projection error simultaneously. This corre-

sponds to finding a model such that the orthogonal projection error is minimized as

shown by Figure 12.4.

The resulting regression is called Total Least Squares regression or orthogonal re-

gression, and assumes that both variables are imperfect observations. An interesting

observation is now that the obtained vector, representing the projection direction

that minimizes the orthogonal projection error, corresponds the the largest principal

component of the data.

In other words, if we want to reduce the dimensionality by projecting the original

data onto a vector such that the squared projection error is minimized in all direc-

tions, we can simply project the data onto the largest eigenvectors. This is exactly

what we called PCA does.

12.2 Finding eigenvalues

• Ax = λx, xneq0, i.e. x has to be non-trivial.

• Ax− λx = 0

• Ax− λIx = 0
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• (A− λI)x = 0

• Notice that by definition, x ∈ N (A − λI), and it cannot be the zero vector,

which means, that there is more than just the zero vector in the null space

of A − λI. But by definition that also means that its columns are linearly

dependent, which means its determinant has to zero, and it cannot be inverted

so it is singular.

• Eigenvalues: find λ so that A− λI is singular.

• Eigenvectors: find x ∈ N (A− λI).

Eigenvalues of a diagonal matrix, are its diagonal elements δ0, δ1, . . . , δn−1, with

the corresponding unit basis vectors e0, e1, . . . , en−1 as eigenvectors.

Eigenvalues of a triangular matrix: are its diagonal elements. This is because

an upper triangular matrix is only singular if and only if there is a zero on its

diagonal. So in A− λI we get vi,j − λ = 0, where i = j for every diagonal element,

which means every diagonal element will be an eigenvalue.

Eigenvalues of a 2× 2 matrix: the inverse of A ∈ R2×2 is given by:

A−1 =

(
a b

c d

)−1
=

1

det(A)
adj(A) =

1

ab− dc

(
d −b
−c a

)
.

This means if det(A) = 0, then A−1 does not exist. So what we want to do, is find

where det(A) = 0:

A− λI =

(
a− λ b

c d− λ

)
,

so where (a − λ)(d − λ) − cd = 0 (which is called the characteristic polynomial of

the matrix). Once we have concrete values in A, this is easy to solve using the

x = −b±
√
b2−4ac
2a

formula, and results in two λ eigenvalues.

Once we have eigenvalues, we can substitute them back and solve for the eigenvec-

tors: (
a− λ b

c d− λ

)(
χ0

χ1

)
=

(
0

0

)
.

It could happen that b2 − 4ac < 0 and consequently we end up with complex
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eigenvalues for our 2× 2 matrix. So for example the matrix:(
3− λ −1

2 1− λ

)
,

has no inverse if and only if (3−λ)(1−λ)−(−1)(2) = 0. This leads to λ2−4λ+5 = 0,

which we can solve with:

λ =
−(−4)±

√
(−4)2 − 4(5)

2
=

4±
√
−4

2
= 2± i.

Then we could substitute in these λ values as before and find complex valued eigen-

vectors.

Eigenvalues of a n× n matrix: The steps are exactly the same as for the 2× 2

matrix.

• A ∈ Rn×n is nonsingular if and only if det(A) 6= 0.

• So we want to find λ such that, det(A) = 0, which is known as the characteristic

polynomial of A.

• Since A ∈ Rn×n, the characteristic polynomial of A is nth degree:

– det(A− λI) = pn(λ) = γ0 + γ1λ+ . . .+ γn−1λ
n−1 + λn

– pn(λ) has n roots/eigenvalues, counting multiplicity, and k distinct root-

s/eigenvalues, where k ≤ n.

– We can factor such a polynomial as: pn = (λ) = (λ−λ0)n0(λ−λ1)n1 . . . (λ−
λk−1)

nk−1 , where n0 + n1 + . . .+ nk−1 = n, and where nj is the algebraic

multiplicity of root/eigenvalue λj.

– Even if all entries of A coefficients of pn(λ) are real valued, some or

all of the roots/eigenvalues may be complex values, in which case they

come in conjugate pairs. So if λ = λReal + iλImaginary is a root, so is

λ̂ = λReal − iλImaginary

• The spectrum of A, Λ(A) is the set of all eigenvalues.

• A has k = |Λ(A)| distinct eigenvalues.

The big problem however, is that according to the Galois theory, if we have an

arbitrary polynomial with degree n ≥ 5, we cannot compute its roots in
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a finite number of computations. This means, this classical det(A) dependent

calculation of eigenvalues is limited to only small matrices.

12.3 Eigendecomposition

Eigendecomposition or spectral diagonalisation could be defined as: given A ∈ Rn×n,

compute a nonsingular matrix X, such that

X−1AX = Λ ⇐⇒ AX = XΛ ⇐⇒ A = XΛX−1,

where Λ is a diagonal matrix. It could be shown that A could be diagonalised if and

only if it has n linearly independent eigenvectors.

Luckily the eigendecomposition of a matrix, corresponds to exactly what we have

done before with our 2× 2 matrix, when we were trying to find its eigenvalues and

eigenvectors. For example, given:

A =

(
1 −1

2 4

)
,

Let’s assume that we have found its eigenpairs (λ, x) that satisfies Ax = λx:(
1 −1

2 4

)(
−1

1

)
= 2

(
−1

1

)
,

and (
1 −1

2 4

)(
−1

2

)
= 3

(
−1

2

)
.

If we then combine the eigenvectors into a matrix and the eigenvalues into a diagonal

matrix, we get: (
1 −1

2 4

)(
−1 −1

1 2

)
=

(
−1 −1

1 2

)(
2 0

0 3

)
.

If we then multiply by the inverse of the eigenvector matrix we get:(
−1 −1

1 2

)−1(
1 −1

2 4

)(
−1 −1

1 2

)
=

(
2 0

0 3

)
,
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which is X−1AX = Λ.

There are a number of really important applications of the eigendecomposition of

a matrix, but one particularly relevant is the calculation of power series. In the

introduction of this chapter and in section 4.1, we talked about how we could calcu-

late the weather 30 days from now, by exponentiating the transition matrix P 30 =

P×P×. . .×P . This however could become really expensive, especially if it’s a large

matrix. What we can do instead is, perform an eigendecomposition of P = XΛX−1,

then exponentiate this 30 times as : (XΛX−1)× (XΛX−1) . . . (XΛX−1), then real-

ize, that this is just XΛ(X−1X)Λ(X−1X) . . .ΛX−1 = XΛ30X−1. Since Λ is just a

diagonal matrix with P ’s eigenvalues as its entries, exponentiating it is really quick,

as it just means raising each diagonal element to k: λk0, λ
k
1, . . . , λ

k
n−1.

A matrix that cannot be diagonalised is called a deficient matrix, meaning it

doesn’t have n linearly independent eigenvalues associated with it. For example the

matrix: (
2 1

0 2

)
,

is a deficient matrix, and had a null space with one dimension.

The algebraic multiplicity of an eigenvalue λ is the power m of the term (x−λ)m in

the characteristic polynomial. The geometric multiplicity is the number of linearly

independent eigenvectors you can find for an eigenvalue. Loosely speaking, the

matrix is deficient in some sense when the two multiplicities do not match.

12.4 Properties of eigenvalues

• If we have a block upper triangular matrix:

A ∈ Rn×n =


A0,0 A0,1 . . . A0,N−1

0 A1,1 . . . A1,N−1
...

...
. . .

...

0 0 . . . AN−1,N−1

 ,

where all the matrices on the diagonal (A0,0, A1,1, . . . , AN−1,N−1) are square

matrices, then:

Λ(A) = Λ(A0,0) ∪ Λ(A1,1) ∪ . . . ∪ Λ(AN−1,N−1),
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meaning that the eigenvalues of A are simply the union of all the eigenvalues

of the individual blocks on the diagonal.

• If we have a square matrix A, and choose two of its eigenvalues which are

not the same, then the corresponding eigenvectors will be orthogonal to each

other.

• If Ax = λx, then AAx = A2x = λ2x.

• If Ax = λx, then Akx = λkx.

• A ∈ Rn×n is nonsingular if and only if 0 /∈ Λ(A).

• If λ ∈ Λ(A), then λ ∈ Λ(AT ) and vice versa. So the eigenvalues of A are the

eigenvalues of AT as well and vice versa.

12.5 Why can we predict the weather as Px(k)?

If P is a transition matrix as we have seen in section 4.1, and in the intro of this

chapter, then all of its columns must sum to one to form a proper probability

distribution. As a consequence of this, and the above, 1 must be an eigenvalue of

such matrix, because:

0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3


T 1

1

1

 = 1×

1

1

1

 .

So if we use x(k+1) = Px(k) to predict the weather, why does x(k) eventually has the

property that Px(k) ≈ x(k)? We know that one of the eigenvalues of P is 1, in fact

that is the largest:

Λ(

0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3

) = {1, λ1, λ2} with 1 > λ1 ≥ λ2.

Let (1, v0), (λ1, v1) and (λ2, v2) be eigenpairs. We will assume (it could be proven)

that these eigenvectors are linearly independent. Then a starting vector x(0) ∈ R3
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could be written as a linear combination of them:

x(0) = γ0v0 + γ1v1 + γ2v2

The following day as we’ve seen is:

x(1) = Px(0) = P (γ0v0+γ1v1+γ2v2) = γ0Pv0+γ1Pv1+γ2Pv2 = γ0v0+γ1λ1v1+γ2λ2v2,

because Pv0 = v0, since Pv0 = (1)v0 by the definition of eigenvectors, and for the

same reasons Pv1 = λ1v1 and Pv2 = λ2v2. If we then continue with the next day:

x(2) = Px(1) = P (γ0v0 + γ1λ1v1 + γ2λ2v2)

= γ0Pv0 + γ1Pλ1v1 + γ2Pλ2v2

= γ0v0 + γ1λ
2
1v1 + γ2λ22v2

So we look at the limit of this:

lim
k→∞

x(k) = lim
k→∞

(
γ0v0 + γ1λ

k
1v1 + γ2λ

k
2v2
)
,

we see that as k → ∞ the 2nd and 3rd term will become 0, because 1 > λ1 ≥ λ2,

so after many days we end up with a vector that points into the direction of the 1st

eigenvector γ0v0.

12.6 The power method

To introduce the power method or power iteration, which is a widely used algorithm

to compute the eigenvectors and eigenvalues of a A ∈ Rn×n matrix, where n ≥ 5,

we with the following assumptions:

• Let λ0, λ1, . . . , λn−1 be eigenvalues of A ∈ Rm×n.

• |λ0| > |λ1| ≥ |λ2| ≥ . . . ≥ |λn−1|.

• Let (λj, vj) be eigenpairs of A.

• Assume that v0, v1, . . . , vn−1 are linearly independent.

• Recall that then A = V ΛV −1.
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Then following the exact same procedure as we did in the previous section, we can

pick an arbitrary vector x(0) ∈ Rn which could be written as:

x(0) = γ0v0 + γ1v1 + . . .+ γn−1vn−1.

And the following iterations:

x(1) = Ax(0) = A(γ0v0 + γ1v1 + . . .+ γn−1vn−1)

= γ0λ0v0 + γ1λ1v1 + . . .+ γn−1λn−1vn−1,

because Av0 = λ0v0, Av1 = λ1v1, Avn−1 = λn−1vn−1, by the definition of eigenvec-

tors: Ax = λx. So consequently the following terms are:

x(2) = Ax(1) = A(γ0λ0v0 + γ1λ1v1 + . . .+ γn−1λn−1vn−1)

= γ0λ
2
0v0 + γ1λ

2
1v1 + . . .+ γn−1λ

2
n−1vn−1,

and in general

x(k+1) = Ax(k) = A(γ0λ
k
0v0 + γ1λ

k
1v1 + . . .+ γn−1λ

k
n−1vn−1)

= γ0λ
k+1
0 v0 + γ1λ

k+1
1 v1 + . . .+ γn−1λ

k+1
n−1vn−1.

So as k →∞:

lim
k→∞

x(k) = lim
k→∞

(
γ0λ

k
0v0 + γ1λ

k
1v1 + . . .+ γn−1λ

k
n−1vn−1

)
,

which means, that the first term γ0λ
kv0 is doing to dominate all other terms, as

λ0 is the largest eigenvalue. So eventually the resulting vector will point into the

direction of the first eigenvector v0.

The problem is however, that if λ0 > 1, then as k → ∞ so will γ0λ
kv0 → ∞.

Conversely if λ0 < 1 then as k →∞ so will γ0λ
kv0 → 0. This is obviously not good,

we need to keep the length of this vector under control. So in the power method,

we divide each term by λ0. Then if we work out the algebra we get:

x(k+1) = γ0v0 + γ1
λ1
λ0

k+1

v1 + . . .+ γn−1
λn−1
λ0

k+1

vn−1.
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So in the limit:

lim
k→∞

x(k) = lim
k→∞

(
γ0v0 + γ1

λ1
λ0

k

v1 + . . .+ γn−1
λn−1
λ0

k

vn−1

)
,

all terms will go to 0, except the first, and eventually the vector will point in the

direction of the first eigenvector.

In it’s current form of the algorithm, we still need to know the eigenvalues, which

is problematic for A ∈ Rn×n, n ≥ 5, as we have mentioned before, because of the

Galois theory. Since we are only interested in the direction of the eigenvectors, we

can simply divide in each step by the length of the vector to prevent it scaling to

infinity or 0.

So we start the algorithm with x(0) ∈ Rn and do the following step iteratively:

x(k+1) :=
Ax(k)

||Ax(k)||2
.

Although the power iteration method approximates only one eigenvalue of a matrix,

it remains useful for certain computational problems. For instance, Google uses it

to calculate the PageRank of documents in their search engine, and Twitter uses

it to show users recommendations of who to follow. For matrices that are well-

conditioned and as sparse as the Web matrix, the power iteration method can be

more efficient than other methods of finding the dominant eigenvector.

Some of the more advanced eigenvalue algorithms can be understood as variations

of the power iteration. For instance, the inverse iteration method applies power

iteration to the matrix A−1.
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